Geometry of the Ellipse

For all points P on this ellipse, $PF_1 + PF_2 = 2a$

Getting to an Equation

- 1. Write a, b, and f next to the appropriate segments on the figure. (**Hint**: use what you know about EF₁ + EF₂.)
- 2. How are a, b, and f related?
- 3. Find the length OS in terms of a, b, and/or f. (**Hint**: use what you know about SF₁ + SF₂.)
- 4. How are EF_1 and OS related?
- 5. Write an equation for the ellipse, assuming
 - a. O is at the origin.
 - b. O has coordinates (h,v).

Definitions: SL is the *major axis*. EI is the *minor axis*. 2f is the *focal distance*. PF₁ and PF₂ are the *focal radii*. OS and OL are the x-radii. OE and OI are the y-radii.

6. What are the x-radius and the y-radius in terms of a, b, and/or f?

Turning It Around

- 7. Sketch an ellipse centered at the origin, but with the foci on the y-axis. Mark a, b, and f wherever they show up on your sketch.

 (Hint: In this case, the major axis is vertical, and the minor axis is horizontal. The minor axis is still equal to 2b, and the focal distance is still equal to 2f.)
- 8. Write an equation for the ellipse, assuming a. O is at the origin.
 - b. O has coordinates (h,v).(Hint: the answers are different from #5.)

Equation Challenges

- 9. Find the equation of an ellipse centered at the origin, with:
 - a. major axis 6, focal distance 8, foci on the x-axis
 - b. one focus at (0,6), sum of the focal radii 16.
- 10. Where are the foci if the center is at (2,3), the x-radius is 4, and the y-radius is 5.