Exponential Graph Similarity

In this activity, we will use GeoGebra in Algebra mode, and the laws of exponents, to show that all exponential graphs are similar.

Vertical Stretch

1. In a new window, graph $f(x)=10^{x}$ and $g(x)=3 \cdot 10^{x}$. Change the color of one of the graphs.

As it turns out, these two graphs are congruent. We will show that by using a well-chosen translation.
2. Make a vector, and use it to translate the graph of $f(x)$. Change the vector until the image of the graph of $f(x)$ is exactly superposed onto the graph of $g(x)$.
3. a. Conjecture: for an exponential graph, a vertical stretch is a \qquad translation.
b. Use algebra to prove your conjecture.
4. Describe the graph of $y=10^{x+1}$ as a translation and as a stretch of the graph of $y=10^{x}$.
5. Generalize: $y=b^{x-p}=k \cdot b^{x}$, if $k=$ \qquad

Dilation

6. In a new window, graph $f(x)=10^{x}$
7. Make a point O at the origin, and dilate the graph of $f(x)$ with center O and scaling factor 3 .
8. GeoGebra gives an equation for the dilated graph. Explain it.

But we know from \#3 above that the dilated graph is congruent to $h(x)=10^{x / 3}$.
9. Explain why the graphs of $f(x)$ and $h(x)$ are similar.
10. Explain why the graphs of $y=2 \cdot 3^{x}$ and $y=5 \cdot 2^{x}$ are similar. (Hint: you will need to use logs.)
11. Challenge: Explain why the graphs of $y=a \cdot b^{x}$ are all similar to each other.

