More on Minus

TER CASES STATES AND STATES

the Lab Gear

- 1. Exploration Choose several numbers and investigate the following questions. Write an explanation, using variables, of what you discover. What is the result when you
 - a. add a number to its opposite?
 - b. subtract a number from its opposite?
 - c. multiply a number by its opposite?
 - d. divide a number by its opposite?

MINUS AND THE DISTRIBUTIVE LAW

For each problem below:

ESSUN

- Use the Lab Gear to model the first expression on the left side of the workmat.
- If possible, simplify the expression by adding zero and removing matching blocks. Get all blocks downstairs.
- Then decide which of the expressions a, b, c, or d is equal to the given expression. Setting up each one in turn on the right side of the workmat may help. Explain your answers.
- 2. x (5 + 2x)a. x - 5 + 2xb. x - 5 - 2xc. x + 5 + 2xd. x + 5 - 2x3. 2x - (-4 + 3x)a. 2x - 4 + 3xb. 2x - 4 - 3xc. 2x + 4 + 3xd. 2x + 4 - 3x4. 3y + (5 - 2y)a. 3y - 5 + 2yb. 3y - 5 - 2yc. 3y + 5 + 2yd. 3y + 5 - 2y5. x - (7 - 2y)a. x - 7 + 2yb. x - 7 - 2yc. x + 7 + 2yd. x + 7 - 2y

- 6. $\bigcirc 6x (-3 x)$ a. 6x - 3 + x b. 6x + 3 + xc. 6x - 3 - x d. 6x + 3 - x
- 7. Write an equivalent expression without parentheses.

a. $2x^2 - (4 - x - x^2)$ b. $(2x^2 - 4) - (x - x^2)$ c. (y - 5) - 3x - 2d. y - 5 - (3x - 2)

8. Write an expression containing at least one pair of parentheses that is equivalent to the given expression. (Do not put parentheses around the whole expression, or around a single term.)

$$3x^3 - 6x + 2 - 5y$$

9. Compare your answers to problem 8 with your classmates. Try to find several different correct answers.

A minus sign preceding parentheses tells you to subtract or take the opposite of everything in the parentheses. Writing an equivalent expression without parentheses is called *distributing the minus sign*.

- **10.** Summary Explain how to distribute a minus sign. Use examples.
- **11.** Write an equivalent expression without parentheses.

a.
$$-(r + s)$$

b. $-(-r + s)$
c. $-(r - s)$
d. $-(-r - s)$

12. Write an equivalent expression without parentheses.

a.
$$-1(r+s)$$

b. $-1(-r+s)$
c. $-1(r-s)$
d. $-1(-r-s)$

You can see from these problems that distributing a minus sign is really just distributing -1.

3.3 More on Minus

♥ 3.3

ADDING THE OPPOSITE

Find the expression that must be added or subtracted. It may help to use the Lab Gear.

- **13.** a. $3x^2 + (-5x) + _ = -(5x + x^2)$ b. $3x^2 + (-5x) - (__) = -(5x + x^2)$
- **14.** a. $-2xy + x + _ = 6xy 2x$ b. $-2xy + x - (_) = 6xy - 2x$
- **15.** a. $-12 + 4yx + _ = 7xy 15$ b. $-12 + 4yx - (_) = 7xy - 15$
- **16.** Compare your answers to parts (a) and (b) in problems 13-15. How are they related? Explain.
- **17.** Generalization Problems 13-15 illustrated the following fact: *Subtracting is the same as adding the opposite*. For each subtraction, write an equivalent addition.

a. y = (-x)

- b. y xc. -y - x
- **18.** Find the sign of the answer. (You do no need to find the answer.)
 - a. 1646 (-2459)
 - b. -2459 1646
 - c. -1646 (-2459)
 - d. 2459 (-1646)
 - e. -1646 (2459)
- **19.** Simplify each expression.
 - a. 6 (-5)
 - b. -5 (-7)
 - c. -21 (-3x) + 15
 - d. -2x (-12x) 5xy
- **20.** Find each difference.
 - a. 2y 7yb. 3xy - (-2xy)c. $-x^2 - 4x^2$ d. 2xy - 2x

Prover and the second and the second second

REVIEW AREA AND MULTIPLICATION

- **21.** What is the other side of a rectangle, if one side is *x* and the area is
 - a. 5*x*?
 - b. x^2 ?
 - c. $x^2 + 2xy?$
 - d. $x^2 + 2xy + 5x$?

The following equations are of the form *length times width* = *area of the rectangle*. Fill in the blanks. You may use the Lab Gear to help you. If you do, remember to use *upstairs* for minus and to build a figure with an *uncovered rectangle* of the required dimensions in the corner piece.

- **22.** $x \cdot __= xy x^2$
- **23.** $(y-2) \cdot __= 5y 10$
- **24.** $(__-3) \cdot x = 2xy 3x$
- **25.** $2x \cdot __= 2xy + 4x^2 10x$

Use the Lab Gear for these.

26.
$$(x + __)(y-5) = xy + 5y - 5x - 2$$

27.
$$(y-1) \cdot __= xy + 5y - x - 5$$

- **28.** (y + 2)(y 1) = _____ (Simplify.)
- **29.** $\bigcirc (y-1) \cdot _ = y^2 + 4y 5$ (Hint: Study problem 28.)

DISCOVERY A SUBSTITUTION CODE

This message has been coded by a *simple* substitution code.

Rules:

- Each letter is always replaced by the same letter throughout the message.
- No letter is ever replaced by itself.

QEB NRIB CLN QEFP GFKA LC TLAB FP QEHQ BHTE IBQQBN FP HISHUP NBMI-HTBA OU QEB PHJB IBQQBN QENLRDELRQ QEB JBPPHDB.

PREVIEW MAKE A RECTANGLE

31. \bigcirc For each problem make a Lab Gear rectangle having the given area. Write a multiplication equation.

a. $x^2 + 9x + 8$ b. $x^2 + 6x + 8$