

For each multiplication, write an equation of the form $length \cdot width \ equals \ area$. (You may use the Lab Gear and the corner piece to model the multiplication by making a rectangle.) In your expression for the area, combine like terms.

- 1. x(2x + 5)
- 2. 2x(y 2)
- 3. y(2y + 2 x)
- 4. (2x+2)(3x-5)
- 5. (x+2)(3y+1)
- 6. (x+2)(y-3x+1)

For each multiplication, write an equation of the form *length* · *width* · *height equals volume*. (You may want to use the Lab Gear and the corner piece to model the multiplication by making a box.) In your expression for the volume, combine like terms.

- 7. x(x+2)(x+5)
- 8. y(x+2)(y+1)
- 9. x(x+5)(x+y+1)

Definitions: A polynomial having two terms is called a *binomial*; one having three terms is called a trinomial. A polynomial having one term is called a monomial.

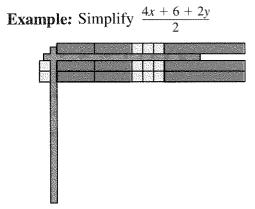
10. Report In problems 1-9, you multiplied two or three polynomials of degree 1. In each case, the product was also a polynomial. Write a report describing the patterns you saw in the products. You should use

observations you made.

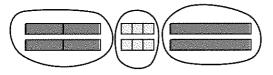
- What determines the degree of the product?
- What determines the number of terms in the product?
- Compare problems having one variable to problems having two variables.

DIVISION AND THE DISTRIBUTIVE LAW

As you probably remember, you can use the corner piece to model division.



In some cases, you can use the Lab Gear in another way to show that a division like this one can be thought of as three divisions.



11. What is the result of the division?

Simplify these expressions, using the Lab Gear if you wish.

12.
$$\frac{10x + 5y + 15}{5}$$

13. $\frac{2x + 4}{x + 2}$

Chapter 5 Sums and Products

14.
$$\frac{x^2 + 4x + 4}{x + 2}$$

15. $\bigcirc \frac{3(y - x) + 6(x - 2)}{3}$

Another way to simplify some fractions is to rewrite the division into a multiplication and use the distributive law.

Example: To simplify \$\frac{6x+4+2y}{2}\$:
Rewrite the problem as a multiplication.
\$\frac{1}{2}\$ (6x + 4 + 2y)\$
Apply the distributive law.

$$\frac{1}{2} \cdot 6x + \frac{1}{2} \cdot 4 + \frac{1}{2} \cdot 2y$$

• Simplify.
$$3x + 2 + y$$

You can see that we could have divided every term in the numerator by 2. That is:

$$\frac{6x+4+2y}{2} = \frac{6x}{2} + \frac{4}{2} + \frac{2y}{2}$$

The single division problem was equivalent to three divisions. This example illustrates *the distributive law of division over addition and subtraction*.

Divide.

16.
$$\frac{9x + 6y + 6}{3}$$

17. $\frac{3x^2 + 2x}{2x}$
18. $6x^2 + 4x$

10.
$$2x$$

10. $2(x+3) + 5(x+3)$

∀ x + 3

Find these products, using the Lab Gear or any other method.

DISTRIBUTIVE LAW PRACTICE

20. 2x(x-1) **21.** y(y+4) **22.** 3x(x+y-5) **23.** (x+5)(3x-2) **24.** (2x+4)(x+y+2)**25.** (2y-x-3)(y+x)

5.3

Write equivalent expressions without the parentheses. Combine like terms.

26.
$$z(x + y) + z(x - y)$$

27. $z(x + y) + z(x + y)$
28. $z(x + y) + x(z + y)$
29. $z(x + y) - x(z + y)$

MULTIPLYING BINOMIALS

The following problems involve multiplying two binomials of the form ax + b or ax - b. Multiplications like this arise often in math. As you do them, look for patterns and shortcuts.

- **30.** (3x + 2)(5x + 6)
- **31.** (3x 2)(5x + 6)
- **32.** (3x + 2)(5x 6)
- **33.** (ax + 2)(3x + d)
- **34.** (2x + b)(cx 3)
- **35.** When you multiply two binomials of the form ax + b or ax b,
 - a. what is the degree of the product?
 - b. how many terms are in the product?
- **36.** When multiplying two binomials of the form ax + b or ax b, how do you find a. the coefficient of x^2 ?
 - b. the coefficient of *x*?
 - c. the constant term?

