

- 1. Exploration
  - a. Use the Lab Gear to make as many different rectangles as you can with one  $x^2$ -block, ten *x*-blocks, and any number of yellow blocks. For each one, write a multiplication equation to show that *area* = *length times width*. Look for patterns.
  - b. Use the Lab Gear to make as many different rectangles as you can with one  $x^2$ block, 18 yellow blocks, and any number of *x*-blocks. For each one, write a multiplication equation to show that *area* = *length times width*. Look for patterns.
- 2. Use the Lab Gear to help you find the other side of the rectangle having the given area. Look for patterns. One is impossible.

# FACTORS AND PRODUCTS

**Definition:** To *factor* means to write as a product.

For example, two ways of factoring 12 are to write it as  $6 \cdot 2$  or as  $4 \cdot 3$ . Some polynomials can be factored. With the Lab Gear we model this by making a rectangle or a box.

174

4. By making a rectangle with the Lab Gear and writing a related multiplication equation, show that the trinomial  $x^2 + 3x + 2$ can be written as a product of two binomials.

As this problem showed, some trinomials of the form  $x^2 + bx + c$  can be factored.

- 5. Factor each trinomial into the product of two binomials. It may help to use the Lab Gear to make rectangles.
  - a.  $x^2 + 8x + 7$ b.  $x^2 + 8x + 12$ c.  $x^2 + 8x + 15$
- 6. Are there any more trinomials of the form  $x^2 + 8x + \_$  that can be factored into two binomials? If so, write and factor them. If not, explain.
- 7. Factor each trinomial into the product of two binomials. It may help to use the Lab Gear to make rectangles.
  - a.  $x^{2} + 13x + 12$ b.  $x^{2} + 8x + 12$ c.  $x^{2} + 7x + 12$
- 8. Are there any more trinomials of the form  $x^2 + \_x + 12$  that can be factored into two binomials? If so, write and factor them. If not, explain.



## THE THIRD DEGREE

**9.** Factor these third-degree polynomials into a product of three first-degree polynomials. Making a box with the Lab Gear may help.

a.  $x^2y + 5xy + 6y$ b.  $x^3 + 5x^2 + 6x$ c.  $y^3 + 5y^2 + 6y$ d.  $xy^2 + 5xy + 6x$ 

- **10. ()** Describe a strategy to factor the polynomials above without the Lab Gear.
- 11.  $\bigcirc$  Factor, using the Lab Gear if you need to,  $x^2y + x^2 + 5xy + 5x + 6y + 6$ .

#### PLUS AND MINUS

**12.** a. Use the corner piece and the Lab Gear to show the multiplication

(y+4)(y+3).

Write the product.

- b. How many blocks of each type were needed to show the product?
- **13.** a. Use the corner piece and the Lab Gear to show the multiplication

(y-4)(y+3).

Write the product.

- b. Compare the number of blocks of each type used to show this product with the number of blocks used in problem 12.
- 14. Write another multiplication that requires one  $y^2$ -block, seven y-blocks, and twelve 1-blocks to show the product. Model it with the blocks and write the product. Compare work with your classmates. Is there more than one possibility?

## MISSING TERMS

Supply the missing terms. Then compare your answers with your classmates' answers.

- **15.**  $x^2 + 15x + \_ = (x + \_)(x + \_)$  **16.**  $x^2 - 7x + \_ = (x - \_)(x - \_)$ **17.**  $x^2 + \_x + 15 = (x + \_)(x + \_)$
- **18.**  $x^2 \underline{x} + 7 = (x \underline{x})(x \underline{x})$
- **19.** Which problems, 15-18, have more than one answer? Explain.

### FACTORING BY TRIAL AND ERROR

- 20. If possible, factor each trinomial into a product of binomials. Try to do it without using the Lab Gear. a.  $x^2 + 5x + 6$ b.  $a^2 + 11a + 30$ c.  $m^2 + 20m + 100$ d.  $p^2 + 2p + 1$
- **21.** Factor.
  - a.  $x^2 5x + 6$ b.  $x^2 - 13x + 12$ c.  $x^2 - 8x + 15$ d.  $x^2 - 9$
- **22. (**) Factor.
  - a.  $6x^2 + 5x + 1$ c.  $6x^2 + x - 1$ d.  $6x^2 - x - 1$
- **23.**  $\bigcirc$  Factor. a.  $x^4 - 8x^2 + 15$ b.  $x^4 - 8x^2 + 16$

# WHAT'S YOUR PROBLEM?

24. Make up six trinomials of the form  $x^2 + bx + c$ . Four should be factorable, and two should be impossible to factor. Exchange with another student, and try to factor each other's trinomials.