

In this lesson, use only whole number exponents.

- 1. Exploration The number 64 can be written as a power in at least three different ways, as 2^6 , 8^2 , or 4^3 .
 - a. Find some numbers that can be written as powers in two different ways.
 - b. Find another number that can be written as a power in three different ways.

POWERS OF 3 AND 9

2. Using your calculator if necessary, try to find a power of 3 that is equal to each power of 9 below. If any are impossible, say so. Fill in the exponent.

a.
$$9^2 = 81 = 3^?$$

b.
$$9^5 = 59049 = 3^?$$

c.
$$9^{10} = 3^?$$

- d. $9^0 = 3^?$
- 3. Using your calculator if necessary, try to find a power of 9 that is equal to each power of 3 below. If any are impossible, say so. Fill in the exponent.

a.
$$3^8 = 6561 = 9^?$$

b.
$$3^3 = 243 = 9^3$$

- c. $3^{14} = 9^?$
- d. $3^0 = 9^?$
- 4.
 - a. Can every power of 9 be written as a power of 3? If so, explain why. If not, show some that can and some that can't, and explain the difference.
 - b. Can every power of 3 be written as a power of 9? If so, explain why. If not, show some that can and some that can't, and explain the difference.

POWERS OF 2, 4, 6, AND 8

- 5. Find two powers of 2 (other than 64) that can be written as powers of 8.
- 6. If the same number is written as both a power of 2 and a power of 8, how do the exponents compare? Explain and give examples.
- 7. Find at least three powers of 2 that can be written as powers of 4. Compare the exponents and describe what you notice.
- 8. Find at least two powers of 2 that can be written as powers of 16. Compare the exponents and describe what you notice.
- 9. 🔷
 - a. Which powers of 2 can be written as powers of 8? Explain, giving examples.
 - b. Which powers of 8 can be written as powers of 2? Explain, giving examples.
 - c. Find the smallest number (besides 1) that can be written as a power of 2, a power of 4, and a power of 8. Write it in all three ways. How do you know that it is the smallest?
- 10. Can you find a number that can be written as a power of 2, a power of 4, and a power of 6? If so, find it. If not, explain why it is impossible.

WRITING POWERS USING DIFFERENT BASES

11. Write each number as a power using a smaller base.

a.	8 ²	b.	27^{3}	c.	25 ³
đ.	16 ⁴	e.	49 ²	f.	2^{0}

₿.9

- **12.** Write each number as a power using a larger base.
 - a. 3^2 b. 9^4 c. 4^8 d. 5^8 e. 6^6 f. 95^0
- **13.** If possible, write each number as a power using a different base. (Do not use the exponent 1.) If it is not possible, explain why not.
 - a. 3^4 b. 3^3 c. 4^5 d. 3^5
- 14. Repeat problem 13 for these numbers.
 - a. 5^4 b. 5^3 c. 25^2 d. 26^4
- 15. Summary If you exclude the exponent 1, when it is possible to write a number in two or more ways as a power? Does it depend on the base, the exponent, or both? Explain. (Give examples of some equivalent powers and of numbers that can be written as powers in only one way.)
- **16.** Generalization Fill in the exponents.
 - a. $9^{x} = 3^{?}$ b. $4^{x} = 2^{?}$ c. $8^{x} = 2^{?}$ d. $16^{x} =$ e. $25^{x} =$

A POWER OF A POWER

Since $9 = 3^2$, the power 9^3 can be written as $(3^2)^3$. The expression $(3^2)^3$ is a *power of a power of 3*.

- 17. a. Write 25^3 as a power of a power of 5.
 - b. Write 8^5 as a power of a power of 2.
 - c. Write 9^4 as a power of a power of 3.

There is often a simpler way to write a power of a power. For example:

- $(3^5)^2 = (3^5)(3^5)$ = (3 \cdot 3 \
- **18.** a. Show how $(2^5)^3$ can be written with one exponent as a power of 2.
 - b. Write $(3^4)^2$ as a power of 3.
- **19.** \clubsuit Is $(4^5)^3$ equal to 4^8 , to 4^{15} , or to neither? Explain.

Generalizations

- **20.** Fill in the exponents. a. $(x^2)^3 = x^2$ b. $y^4 = (y^2)^2$ c. $y^{10} = (y^5)^2$ d. $y^6 = (y^3)^2$ e. $(x^4)^3 = x^2$
- **21.** Fill in the exponents.

a.
$$(y^2)^x = y^?$$

b. $(y^3)^x = y^?$
c. $(x^4)^y = x^?$
d. $y^{ax} = (y^x)^?$

The generalization you made in problem 21 is one of the *laws of exponents*. It is sometimes called the *power of a power law*:

 $(x^a)^b = x^{ab}$, as long as x is not 0.

22. Explain how the ideas you discussed in problem 15 are related to the power of a power law.

