## Rolling Dice

1. Roll forty 10 -sided dice, and remove the dice that came up with a 0 . Repeat this over and over. Record the results in the second column below:

How many dice are left

| How many rolls | Your experiment | Class average | Theory |
| :---: | :---: | :---: | :---: |
| 0 | 40 | 40 | 40 |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 |  |  |  |
| 5 |  |  |  |
| 6 |  |  |  |
| 7 |  |  |  |
| 8 |  |  |  |
| 9 |  |  |  |
| 10 |  |  |  |
| 11 |  |  |  |
| 12 |  |  |  |
| 13 |  |  |  |
| 14 |  |  |  |
| 15 |  |  |  |
| 16 |  |  |  |
| 17 |  |  |  |
| 18 |  |  |  |
| 19 |  |  |  |
| 20 |  |  |  |

## Rolling Dice (cont)

2. Fill out the "class average" column.
3. Start Fathom on your laptop.
a. Drag a collection into the window. Rename it "Dice" by double-clicking "Collection 1"
b. Click on it to select it, and go to the Collection->New Cases... menu item
c. Type " 21 " and click OK. (Not the quotation marks!)
d. Double-click the collection, and enter two attributes: "rolls", and "dice_left"
e. For "rolls" double-click the "Formula" box and enter "caseIndex - 1 "
f. Close "Inspect Dice"
g. Click on the collection to select it, and drag a table into the window.
h. Enter the class average data in the "dice_left" column.
i. Drag a graph into the window. Drag the word "rolls" from the table to the x-axis. Drag the word "dice_left" to the $y$-axis.
4. Fill out the "theory" column, by figuring that on average, about $10 \%$ of the dice get removed each time. Round the numbers to the nearest whole number.
5. Write an equation for the theoretical number of dice left as a function of the number of rolls. (Use "rolls" in your equation instead of " $x$ ", because that's how Fathom wants it.)
6. Graph the function in Fathom by selecting the graph and choosing "Plot Function" in the "Graph" menu. In the formula, do not type " $y=$ ", or "dice_left=". Use "rolls" instead of " $x$ " in the formula.
7. Is the formula a good model for the data?
8. Is the function continuous or discrete?
9. Does it have a y-intercept? What is its significance?
10. Does it have an $x$-intercept? What is its significance?
11. Write the equation using " $x$ " and " $y$ " instead of rolls and dice_left. Use "a" instead of 40 . Use "b" instead . 9

Because x is in the exponent, this function is called an exponential function.

