Rolling Dice

1. Roll forty 10-sided dice, and remove the dice that came up with a 0. Repeat this over and over. Record the results in the second column below:

How many rolls	Your experiment		Theory
			Theory
0	40	40	40
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

How many dice are left?

Rolling Dice (cont)

- 2. Fill out the "class average" column.
- 3. Enter the class average data in your calculator, using STAT, EDIT. Graph them using STAT PLOT.
- 4. Fill out the "theory" column, by figuring that on average, about 10% of the dice get removed each time. Round the numbers to the nearest whole number.
- 5. Write an equation for f(x), the theoretical number of dice left after x rolls. Graph the function on your calculator, and check that it is a good model for the data.
- 6. What is the independent variable for f(x)? What is the dependent variable?
- 7. What are the domain and range of f(x)?
- 8. Is f(x) continuous or discrete?
- 9. Does f(x) have a y-intercept? What is its significance?
- 10. Does f(x) have an x-intercept? What is its significance?

Because x is in the exponent, this function is called an *exponential function*. You will learn much more about exponential functions in this course.