\qquad

Geometry of the Ellipse

For all points P on this ellipse, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=2 \mathrm{a}$

Getting to an Equation

1. Write a, b, and f next to the appropriate segments on the figure. (Hint: use what you know about $\mathrm{EF}_{1}+\mathrm{EF}_{2}$.)
2. How are a, b, and f related?
3. Find the length OS in terms of a, b, and/or f. (Hint: use what you know about $\mathrm{SF}_{1}+$ SF_{2}.)
4. How are EF_{1} and OS related?
5. Write an equation for the ellipse, assuming
a. O is at the origin.
b. O has coordinates (h, v).

Definitions: SL is the major axis. EI is the minor axis. 2 f is the focal distance. PF_{1} and PF_{2} are the focal radii. OS and OL are the $\mathrm{x}-$ radii. OE and OI are the y -radii.
6. What are the x-radius and the y-radius in terms of a, b, and/or f?

Turning It Around

7. Sketch an ellipse centered at the origin, but with the foci on the y-axis. Mark a, b, and f wherever they show up on your sketch.
(Hint: In this case, the major axis is vertical, and the minor axis is horizontal. The minor axis is still equal to 2 b , and the focal distance is still equal to 2 f .)
8. Write an equation for the ellipse, assuming
a. O is at the origin.
b. O has coordinates (h, v).
(Hint: the answers are different from \#5.)

Equation Challenges

9. Find the equation of an ellipse centered at the origin, with:
a. major axis 6 , focal distance 8 , foci on the x -axis
b. one focus at $(0,6)$, sum of the focal radii 16.
10. Where are the foci if the center is at $(2,3)$, the x -radius is 4 , and the y -radius is 5 .
