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The reform movement has promoted a shift in the central goal of school mathematics: from the
memorization of algorithms to conceptual understanding. Number sense and function sense have
been widely seen as key components of this understanding. In this chapter, I propose that:

Operation sense is the key link between number sense, function sense, and the all-important
symbol sense. Operation sense, therefore, deserves to be at the heart of early mathematics.
A good way to support the shift towards understanding is with a tool-based pedagogy: the use
of manipulative, pictorial, and electronic thinking tools. The use of such tools does not
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guarantee understanding, but it does provide a good environment for discussion,
communication, and reflection, and can play an important role in rethinking early
mathematics, including the necessary changes in teacher education.
The (enormously important) domain of arithmetic should not be the whole of elementary
school mathematics. An eclectic collection of topics drawn from recreational math and
elsewhere can provide a rich source of contexts for worthwhile early explorations.
The implementation of this or any significant reform of elementary school mathematics will
require a political strategy. The centerpiece of such a strategy should be the training and
hiring of math specialists throughout our elementary schools.

Making Sense
There is broad agreement in the math reform movement that schools' emphasis on algorithmic
mastery in both arithmetic and algebra is misguided. The students trained under this regime fail to
develop an understanding of the underlying mathematics, and in fact soon lose their grasp on the very
skills that were intended to be the focus of their education. To address this problem, the reform
movement proposes changes in direction and emphasis, in both curriculum and pedagogy. These
changes are often presented as a way to help students develop number sense, and function sense.

The "sense" formulation is an improvement in our view of students and learning. It pushes us to a
view of the student as a thinker, a person capable of understanding important mathematical domains,
and helps move our thinking away from the view of the student as a programmable machine, a view
that is consistent with the "skills" emphasis, but inconsistent with the reality of young human beings.

In the domain of arithmetic, instead of spending hundreds of hours trying to make children into a
poor substitute for a 5 dollar machine, we should shift to the development of number sense, mental
arithmetic, and an introduction to number theory. While much can be learned by discussing and
thinking about ways to carry out calculations, accuracy and speed are no longer the goal:
understanding is. A similar shift is necessary in algebra. In "A New Algebra" (Picciotto and Wah,
1993) I articulated a proposal for new directions in secondary school algebra. Not surprisingly, a
necessary corollary to taking these new directions is to make some changes at the elementary level.

A key tenet of the new algebra I propose is the emphasis on the development of symbol sense. A
recent paper by Abraham Arcavi (1994) helps focus our attention on this. I fear symbol sense may be
undervalued by some in the reform movement. In some cases, an overreaction to the failure of our
current approach to Algebra may lead to a badmouthing of symbolic representation and manipulation.
Such an over-reaction would only serve to perpetuate the current situation, but in a different way. We
would go from algebra as gatekeeper through ineffective teaching of symbol sense (College Entrance
Examination Board, 1990) to lack-of-algebra as gatekeeper through out-and-out non-teaching of
symbol sense.

Many beginners in algebra confuse 2x, 2+x, and x2. This is not merely a linguistic obstacle, but also a
conceptual and mathematical one. The notation would be easier to grasp if it were associated with
some meaning in the minds of the students. Another popular mistake among high school students is
to "distribute the square": (x+5)2 = x2 + 25. It is easy to blame this on the weaknesses of Algebra 1,
but some questions remain: Do we think it is important for students to understand this? If yes, how
would one go about getting such ideas across?

If students cannot perform simple algebraic manipulations correctly, they cannot effectively pursue
math, science, or statistics. I am not talking about simplifying radicals within fractions within radicals
within fractions, but simple manipulations like the one above, or like removing the parentheses in
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-(y-1). The reality is that even simple manipulations are difficult to understand for many, if not most
students. That difficulty leads many educators to despair about the possibility of teaching them, and
makes it tempting to conclude that these manipulations are not important. On the other hand, the fact
that these are seen as trivial by many of us leads us to hope (foolishly) that they will take care of
themselves if we only engage the students in interesting math problems.

Students who cannot work with symbols are severely handicapped. This is true whether their lack of
facility with symbols stems from being victims of the old-fashioned Algebra 1, or participants in a
reform curriculum that de-emphasizes symbolism to the point of near-omission. Just like number
sense has not and cannot be made obsolete by calculators, symbol sense is a necessary part of math
and science, and cannot be made obsolete by technology. School algebra is not the only conceivable
symbolic framework, (computer programming offers an interesting alternative), but it is a very
important one. In fact the computer programs beneath any new computer-based symbolic
representations themselves depend on the use of traditional algebraic notation.

Operation Sense
Conceptually, number sense, function sense, and symbol sense involve a substantial common
component which I would like to call operation sense. For example, take the sequence 5, 8, 11, 14, ...

Number sense should include the ability to recognize repeated addition in this sequence, and
its relationship to multiplication.
Symbol sense should include the ability to express and recognize the same thing in a form
such as a+nd, or in this case 5+3n.
Function sense should include the ability to recognize the relationship between that and the
general linear function y=mx+b -- here y=3x+5.

None of this is possible without a solid grasp of addition and multiplication, their structural
relationship, and their uses in various applications. An understanding of operations is the foundation
of number sense, symbol sense, and function sense.

While it may be interesting to some to distinguish algebraic from arithmetic thinking, it is useful to
recognize operations as the joint underlying foundation of both arithmetic and algebra (whether you
see algebra as being about functions, about structure, or like I do see it as a combination of those).
This has immediate curriculum consequences, irrespective of the eventual resolution of the broader
theoretical questions.

Sample Lessons on Operations
When I taught elementary school, I taught many lessons to help my students develop operation sense.
Many of these lessons appear, in a secondary school version, in Algebra: Themes, Tools, Concepts (a
secondary textbook I helped write -- Wah and Picciotto, 1994).

The Zero Monster:
The Zero Monster eats zeros, but there are no zeros in sight. However, there are some cups and some
caps [figure 1]. Cups and caps cannot be turned over, but a cup can be combined with a cap to make a
zero, which the Monster can eat. For example, if there are seven cups and three caps, you can make
three zeros. After the Monster eats, there are four cups left. So you can say that 7 cups + 3 caps = 4
cups.
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This setup leads to various addition problems (all cups, all caps, cups plus caps, caps plus cups, not to
mention missing addend problems of the various types. An interesting problem is "what Zero
Monster additions have answer 4 cups?" ) Zero Monster arithmetic is of course isomorphic to the
integers under addition.

This lesson is meant to complement, not replace other approaches to integer arithmetic, such as the
particle / antiparticle model, the elevator model, the put in / take out model, the 1-D vector model, the
income / expense model, and the motions on the number lines model. The question is not "which is
the best model?" but "how do we use and articulate multiple models when teaching important
concepts?"

The McNuggets Problem
At McDonald's you can order 6, 9 or 20 Chicken McNuggets. This allows you to order 15
McNuggets (6+9) but not 7 McNuggets. What numbers can be ordered? What numbers cannot be
ordered?

This problem, with a number theoretic flavor, is an example of what I believe is called the "stamp
problem". (As in: What values can you get by combining any number of 23 cent and 32 cent stamps?)
In the case of two stamps with relatively prime values, there is a nice result about the greatest value
that cannot be obtained. However, at the elementary school level, that result is not as important as the
experience with addition, multiplication, and their relationship that students gain while exploring it.

Another rich problem from the same domain that works well in elementary school: In how many
ways can each whole number (or integer) be written as a sum of consecutive whole numbers (or
integers)? Again, the full answer need not be arrived at in order to get a good mental workout and
develop an understanding about numbers and operations.

Mod Clocks
A mod clock [figure 2] is a talking function machine. If you say a whole
number, it responds with a whole number. For example, one mod clock
responded this way:

7 --> 2
11 --> 1
4 --> 4

17 --> 2
10 --> 0

Students try numbers as inputs, and the clock responds (in the voice of the teacher) with a number
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from 0 to 4. The output is the remainder when dividing the student's number by 5, but at first students
do not see this. They are able to predict the output based on discovering a pattern relating the last
digit of the input to the output. However when asked what the special number of this clock is, it is not
unusual for a student to say "5". Matters are clarified further by analyzing the behavior of other mod
clocks, such as (in rough order of difficulty) mod 2, mod 9, mod 3, mod 4, mod 6.

At some point in this process, it becomes useful to discuss strategies for guessing the output. In some
cases you can inspect the number's last digit, in other cases the sum of the digits is useful. In all
cases, it is possible to count around the clock, and see where one lands -- except of course for very
large numbers, where such a strategy is not likely to succeed.

Some mod clocks ding audibly before giving their outputs. For example, in the case of the mod 5
clock:

7 --> ding, 2
11 --> ding, ding, 1
4 --> 4
17 --> ding, ding, ding, 2
10 --> ding, ding, 0

The number of dings corresponds to the number of times one passes 0 when counting to the input
number, or in other words the quotient of the division by 5. Again, students can be asked to predict
the number of dings, and worthwhile discussions can be had about how this all works.

It would not be difficult to create a Mod Clock computer microworld, but the activity works well
without a computer.

This work can be followed up by defining addition and multiplication mod 5 (or 9, etc). Students can
be asked to look for the identity element, the inverse of each element if it exists. They can make
addition and multiplication tables, solve missing addend problems, and so on. Mod clocks make for
explicit discussion of operations, and for deeper understanding of the structures underlying the real
number system.

A related area to investigate is Calendar Math, where the current month is declared to be infinite, and
an arithmetic of the days of the week is created. For example, assuming the month starts on a
Wednesday, the sum We+Th --> 1+2=3 --> Fr. Interestingly, you would get We+Th=Fr even if you
picked different dates for Wednesday and Thursday, such as 8+9=17, or 1+9=10. The 3rd, the 10th
and the 17th are all Fridays. (Of course, if the month did not start on Wednesday, everything would
be different.) An early question in the investigation of Calendar Math is what day of the week would
the 100th day of the month be? (The infinite month is needed in order to make it possible to use late
dates in additions or multiplications without falling out of the month.) Again, one can define
multiplication, make tables, solve missing addend and factor problems, find the identity and inverse
elements, in short explore the properties of these operations.

Magic Carpets ↑



Magic carpets are the only means of transportation available to travel among the lattice points. They
come in various configurations [Figure 3]. A carpet can be equipped with one to eight arrows: East,
West, North, South, North-East, North-West, South-East, and South-West. For example, a carpet
equipped with a North arrow, a North-East arrow, and a South arrow makes it possible to go from the
origin to (3,2) in many ways. Two examples:

NE, NE, NE, S -- which could be abbreviated to (NE)3*S
S, NE, S, NE, S, NE, N, N -- which could be abbreviated to (SNE)3*N2

Many questions can be investigated in this microworld, involving notation, concepts, and the
interaction of the two. For example: what sequences of moves take you back where you started? what
sequences of moves are equivalent to each other? for a given destination, what is the most
economical way to get there? what are the rules for simplifying sequences of moves? what are the
"fastest" carpets? what are the carpets that can get most places with the fewest arrows? what is the
greatest number of arrows a carpet may have and still not be able to reach every lattice point?

The YZ game
The goal is to shorten strings of Ys and Zs, using the following rules:

YZ = ZY
YYY can be erased
ZZ can be erased

For example: YZYZZYZZZYY
erase the first ZZ: YZYYZZZYY
erase the first ZZ: YZYYZYY
switch the first YZ: ZYYYZYY
erase YYY: ZZYY
erase ZZ: YY
YY cannot be simplified

After practicing by shortening YZ strings on the chalkboard, students can be asked to predict the
simplified version of a given string. What are the possible resulting strings? How should we write the
empty string? What is the inverse of a given string? A "put together table" for the six elements of the
group can be filled in. Exponential notation can be introduced, and strings like Y9 Z9 can be
discussed.

A follow-up is "the yz game", where the rules are:
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z = yzy
yyy can be erased
zz can be erased

No commutativity this time. This is very un-intuitive, compared to the previous example. Predictions
of the simplified version of a given string are extremely difficult to make, and strategies for
simplifying a string as simple as zyz are worth discussing.

Another follow-up: the "def" game (presented in story form in Wah and Picciotto, 1994, p. 112). In
this game, there are three symbols rather than two, and the rules are:

dd=e
ee=f
ff=d

How many distinct elements are there? What is the identity element? what is the inverse of each
element? What are the powers of each element? The fact that this group turns out to be isomorphic to
the (additive) calendar group discussed above is beyond elementary school students' understanding,
but may perhaps be discussed profitably with their teachers.

A Conceptual Approach to Operations
The main purpose of the sample lessons presented above is to lead students to pay explicit attention
to operations and to their structure. Most of them have a strong group theoretic flavor. Surprisingly,
(or perhaps not!), I have found that elementary school students are far more open to these sorts of
explorations than high school students, who by then reflect the dominant culture and fear that such
work may be frivolous and lack "real world" applicability. Of course, the lessons above only scratch
the surface. Much more work on operations needs to be done in elementary school, for example on:

undoing operations,
place value,
powers of ten,
order of operations,
rational numbers,
the effect of multiplying and dividing by numbers between zero and one,

and so on.

By the time students reach secondary school, they should be acquainted with the following ideas:

Models, interpretations, and uses of the four operations. (In middle school include: squares
and square roots; cubes; an introduction to exponentiation.) In particular, this entails the
ability to recognize which operation can be used, and how, to solve various problems, as well
as the ability to recognize whether one divides one number by the other, or vice-versa.

1.

The structural relationships between operations, especially the inverse relationship between
addition and subtraction, and multiplication and division, and also the distributive law. (In
middle school, include an introduction to the laws of exponents.)

2.

Generalization of the concept of operation beyond arithmetic by looking at concrete examples
of groups. Familiarity with the concept of identity and inverse element, commutativity and
non-commutativity. (This point is not intended to promote rote parroting of formalistic rules. I
hope the sample lessons showed that these ideas can be approached at an intuitive and
informal level.)

3.
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In addition to lessons such as the ones mentioned above, the work described in just about every
chapter of this volume can help develop these understandings, provided that the appropriate
awareness is present among the teachers. The purpose of the conceptual and structural view of the
operations is not so much to prepare students for college-level abstract algebra, a goal that is only
relevant to a tiny fraction to our students. Rather, the purpose is to strengthen our students' grasp of
number, function and symbol, which in turn will help prepare them for any sort of work in
mathematics and science, including especially algebra -- however you define it.

Speed and accuracy in executing traditional algorithms for carrying out the operations should not be
the goal of instruction. Instead, discussion and analysis of student-generated and traditional
algorithms should have the goal to improve students' conceptual understanding of the operations and
of the number system. Such discussion of division algorithms can for example reveal the structural
relationship between division and multiplication, and also between division and repeated subtraction
or addition.

Separating long division as a skill (not a very useful one these days) from the concepts related to
division is representative of the approach I propose. The concepts will never be obsolete. A high
school parallel may help make the point: I do not teach my high school students how to use a slide
rule accurately and fast, since that skill is obsolete. But I try to teach them why and how a slide rule
works, because this allows me to get to key conceptual points about logarithms. The same approach
applies to traditional arithmetic algorithms. Being able to deconstruct them is worthwhile. Being able
to use them accurately and fast, less so.

The conceptual emphasis does not mean that we can ignore "grammatical" issues, such as how to
read expressions that involve minus, or expressions that involve several operations. When working
on problems beyond a certain level of complexity, expressions such as -(1 + (-2) - 3) will surface.
This expression includes three minus signs, each of which has a different interpretation. The last one,
between two sub-expressions, means "subtract," or "take away." The first one, in front of an
expression, means "the opposite of". The middle one, in front of a positive number, means
"negative". These notational issues cannot and should not be avoided. Of course, to a great extent,
they are questions of convention and not of principle, and should be treated as such, but that does not
mean they are not important.

Another example of a grammatical nature: students should be able to tell that an expression like 2(3)
+ 1 is an addition, not a multiplication, because the + is about the whole expression, while the
implied multiplication sign only affects the 2 and the 3. On the other hand, the expression 2(3+1) is a
multiplication, because the implied multiplication sign is about the whole expression, while the +
only involves the 3 and the 1. Again, this is a question of convention, but it is related to an important
structural concept: the distributive law.

The Distributive Law
The most crucially important and difficult structural understanding about operations at the elementary
level is the distributive law. Understanding it is fundamental to doing mental arithmetic, as in: 24 *
30 = 600 + 120. This sort of mental agility with numbers remains important in an age when electronic
computation increasingly replaces paper-pencil digit-pushing. (Of course there are other important
understandings that go into number sense, such as especially place value.)

The distributive law is also a key concept in the development of algebraic symbol sense. Abraham
Arcavi (1994) attempts to define symbol sense by discussing a number of examples, several of which
are built around the distributive law. For example, understanding the distributive law allows one to
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see that the equation (2x+3)/(4x+6)=2 does not have any solution. Or take the problem: "Take an odd
number, square it, and then subtract 1. What can be said about the resulting number?" Writing the
expression (2n-1)2-1, and using the distributive law repeatedly, we get:

(2n-1)2-1 = 4n2-4n = 4n(n-1) = 8*n(n-1)/2

This allows the insight that the resulting numbers are triangular numbers multiplied by 8. Arcavi's
discussion of this example does not focus on the distributive law, but on the ability of an expert to
read into the symbols: the second expression tells us that the number is a multiple of 4, the third that
since n and n-1 are consecutive, it must be an even multiple of 4, ie a multiple of 8, and finally the
last expression that it is a triangular number times 8. However the example also shows that it is
difficult to separate interpretive ability from manipulative facility. The insights the symbols give us
can only be there for us if we understand the underlying structure.

There has been a fair amount of bashing of factoring in the math reform movement. This probably
stems from the overemphasis that many teachers and textbooks have put on the skill of factoring
trinomials at the Algebra 1 level. However, if students do not understand the concept of factoring,
they do not fully understand multiplication or the distributive law, and they are essentially illiterate in
the symbolic realm. Once again, I suggest we make a distinction between skill and concept.
Factoring, as a skill, should be de-emphasized. Factoring, as a concept, should be given more
emphasis. It is a particular case of reversibility, "an ability to restructure the direction of a mental
process from a direct to a reverse train of thought" (Krutetskii, quoted by Rachlin, whose perceptive
paper "Algebra from x to why" (1987) should be required reading for all who profess an interest in
the learning of algebra).

Manipulatives

It is widely believed that working with numbers automatically generates an understanding of such
concepts as the distributive law. Many teachers and textbooks describe algebra as the "natural"
extension and generalization of arithmetic. And of course, there is some validity to that point of view.
However the fact of the matter is that many students have tremendous difficulty making the transition
to these ideas with variables, perhaps because they have a shaky sense of number. In any case, work
with well-designed manipulatives can help build the necessary foundation to facilitate the leaps to
abstraction that are embedded and embodied in the notation of algebra. For some students
manipulatives provide an important tool, for others, they provide a geometric context where they can
broaden and deepen their understanding, which is often only mechanical mastery of algorithms.

Over the years Zoltan Dienes, Mary Laycock, and Peter Rasmussen each contributed some useful
ideas to the design of effective algebra manipulatives. I took their work further and developed the
Lab Gear, a manipulative that has helped many teachers bring symbol-string algebra to student
populations who were previously frozen out of secondary school math.

What some have called empirical algebra (work with Cartesian and tabular representations in
so-called realistic contexts) provides one essential arena to help build students operations sense, but it
does not go far enough. Students' ability to understand operations is much enhanced if the discussion
of so-called "real world" problems is complemented by the intelligent use of arithmetic manipulatives
such as Cuisenaire and base ten blocks, and algebraic manipulatives, such as the Lab Gear. This is
because those manipulatives give students objects to think with and talk about. These objects provide
an additional language which helps students' number and symbol sense by developing and building
on their visual, tactile, and geometric insights with a special focus on the operations. Used properly,

"Geometry is the user interface for mathematics." (Attributed to Bill Thurston.)
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they help build a theoretical framework for algebra.

In the following section, I will introduce the Lab Gear, and briefly demonstrate some key Lab Gear
lessons, lessons that over time and with discussion can lead to a solid understanding of the
distributive law. This approach gives much more weight to geometry as a way to learn algebra than is
currently fashionable in certain math ed reform circles (for example among those who believe that all
of algebra should be seen through the lens of functions.) Top

Base Ten Blocks and the Lab Gear
Base ten blocks are a model of the decimal number system. In the model, place value is replaced by
"shape and size" value [Figure 4]. Blocks represent ones, tens, hundreds, and thousands. The fact that
ten ones represent the same quantity as one ten, for example, is clear from the very design of the
blocks. However, seeing this is far from automatic for young children! The blocks merely provide an
environment for mathematical activity and discussion, which can lead to that understanding.

The Lab Gear extends the model. In addition to yellow number blocks (ones, fives, and twenty-fives)
there are "variable" blocks: x, y, xy, x2, xy, y2, x2y, xy2, x3, y3. [Figure 5]

* Make a Rectangle
A canonical activity in this environment is:

a. Make a rectangle using a given set of blocks;

b. For this rectangle, write the multiplication 'length * width = area'

For example, making a rectangle with a certain number of units leads to the interesting discussion of
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how many such rectangles are possible. In the case where only one is possible, the number is prime.

Making a rectangle with three tens and six ones can only be done in the 3*12=36 arrangement. Doing
a series of problems of this type can provide good preparation for a discussion of how to multiply
one-digit numbers by two-digit numbers, and more generally for the distributive law.

Making a rectangle with three x's and six ones is in some ways the same problem, except that the
multiplication is 3(x+2)=3x+6, a fairly explicit example of the distributive law. Again, doing a series
of problems of this type can lay the groundwork for interesting discussions.

"Make a Rectangle" is a straightforward question that all students can understand. Actually finding
the rectangle can be challenging, particularly in the case of a trinomial. (Say the required blocks are
one x2, three x's, and two 1's.) Such a visual puzzle appeals to many students. Being able to "read"
the multiplication in the resulting rectangle is helped by the use of the Lab Gear's Corner Piece,
which helps students see the dimensions of the rectangle. The figure shows 3(2x+1)=6x+3 [Figure 6]

Some understandings about operations are built into such a figure: that lining up two x's and 1 is a
representation of x+x+1 or 2x+1, that the area of a rectangle is a representation of multiplication of
its dimensions. These understandings cannot be taken for granted, and their discussion is part of the
essential purpose of the activity, whose goal is only partially to factor the original expression.
Developing visual models for addition and multiplication is pedagogically and mathematically very
powerful. One cannot credibly argue that students are better off not understanding these models than
understanding them.

On the other hand, I do not claim that merely doing these activities will accomplish miracles. To
develop an understanding of the distributive law, and an ability to use it, takes a lot more. "Make a
Rectangle" must be followed up with a range of activities, some using manipulatives, some not, and
some making connections between the manipulatives and the other representations. "Make a
Rectangle" starts with the area and asks for the dimensions. The activity can be reversed: given the
sides, what is the area? This gives students a method for finding the product of 12 and 15, or of (x+2)
and (y+x+1). After building the multiplications with blocks, students can sketch the block
multiplication on paper, without blocks, and then they can be shown the "multiplication table" format
for multiplying [Figure 7].

5x +6
3x 15x2 +18x
+4 +20x +24

Figure 7

These activities can be followed up or accompanied with work on division (given the area and one
side of a rectangle, what is the other side?), with activities based on the volume of a rectangular prism
("Make a box, write an equation about its volume"), as well as with a study of patterns in squaring
and cubing. Even after doing all this work, there is no guarantee that students will have mastered all



the ideas that are involved. But the chances are much better than if the geometric representation was
denied them. As a follow-up on this sort of work, in secondary school, algebra manipulatives can
make such previously arcane topics as completing the square considerably more accessible.

* Perimeter
Another activity altogether with the Lab Gear, which is also very relevant to the issue of
understanding operations is the task: "find the perimeter of this Lab Gear figure" [Figure 8].

This is a very useful activity for two reasons. On the one hand, students find one part of it quite
difficult, which reveals their weak grasp of operations. (Specifically, the side of length x-1 often
eludes them.) On the other hand, this is a rich arena for alternate strategies, and alternate solutions,
which are interesting to discuss. For example, is the perimeter 4x+2 or 3+3x+(x-1)? How could both
of these be right?

Some teachers object to this activity by bringing up that x and y cannot be variable in this context,
since for example, negative values are meaningless. Indeed, this is a situation where x and y each
stand for a given (unknown) value. This is a common way to use variables, and this activity provides
a context where this subtlety can be discussed with students.

Manipulatives Polemics
I cannot guarantee that the use of algebra manipulatives at the elementary level will be helpful. I have
used other manipulatives at that level, and I have used algebra manipulatives at the secondary level,
but since I developed my algebra manipulatives while working in a high school, I have no idea how
they would be received by younger children. All I can say is that I think this would be an interesting
and important area of research. My hunch, based on reactions of upper elementary school teachers, is
that algebra manipulatives can be used profitably with students as young as 9 years of age. In any
case, I would like to answer some of the general objections to manipulatives that I have heard from
various math educators.

* Dimensions
Some educators object to this use of manipulatives because it presumes an understanding of area (and
volume) that not all students have. That is a legitimate concern, but all it means is that we need to
learn how to help students develop those understandings. There are various ways to deal with that
(see for example some ideas in the Smith and Thompson chapter in this volume). Not only do
manipulatives in no way inhibit the learning of the concept of area -- in fact they provide both
motivation and an additional arena for the teacher to pay attention to this crucial concept which has
pay-offs and spin-offs all the way across the curriculum. If the fact that some students have a weak
understanding of area meant we should avoid using area in teaching algebra, then we couldn't use
numbers in teaching anything, since some students have a weak sense of number!

Beyond area and volume, some educators are concerned about the fact that in a Lab Gear problem
like 3(2x+1)=6x+3, the x on the left side refers to the length of the block, while the x on the right side
refers to its area [Figure 6]. Is this confusing to the students, they ask? Students do not usually know
enough to be confused by this, but it is interesting for teachers to think about it.

The Lab Gear can serve as a model of dimensions with the following convention: a thickness of one
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unit does not contribute to the dimensionality of a block figure. From that point of view, x3 is a model
of a three-dimensional object, xy is a model of a two-dimensional object, x is a model of a
one-dimensional object, and 1 is a model of a zero-dimensional object. This is of course not literally
true: all physical objects, including Lab Gear blocks, are three-dimensional. However this convention
allows us to have a consistent model. The x on the left is in an (x+2) by 1 by 1 arrangement, so we
think of it as one-dimensional, and hence x refers to its length. The x on the right is part of an (x+2)
by 3 by 1 arrangement, so it is part of a two-dimensional figure, and x refers to area.

In this model, the degree of a polynomial is the lowest dimension that the blocks representing the
polynomial can be arranged in. For example, three x-blocks can be arranged as a two-dimensional
rectangle, or a one-dimensional line segment [Figure 9]. Since the lowest dimension is one, 3x is of
degree 1.

All this may be too subtle for elementary school students, but it does not prevent them from using the
manipulatives at an appropriate level. After all, we don't expect children to understand how
calculators work, but that does not prevent the calculator from serving a purpose in their education!
The learning of any new domain worth learning must necessarily rely on partial and incomplete
understandings at some times.

* Manipulatives as calculators
Yet others object to the use of manipulatives because they feel uncomfortable at the fact that
manipulatives can make previously difficult work appear easy, and therefore can mask a lack of
understanding. That is a crucial insight. Deborah Ball (1992) gives the example of students carrying
out a subtraction correctly with manipulatives, by following rules they have memorized. However,
once removed from the manipulatives, they revert to their previous mistakes. The very same thing
happens with the example given above: students who can multiply binomials correctly with the help
of the Lab Gear, will later write (x+5)2=x2+25. Does this mean that manipulatives should not be
used? Absolutely not.

First of all, manipulatives obviously do not cause the mistake, which happened before manipulatives
even existed. Second, if a student can do this multiplication correctly with manipulatives, upon
making this mistake when working with the symbols, mere mention of the manipulatives by the
teacher is often enough for the student to think about it, perhaps draw a sketch, and make the
correction without any further guidance. In other words manipulatives can provide a student-
controlled home base to which they can retreat as necessary, until they no longer need it. Obviously,
the goal is to get rid of the training wheels, to use Ball's metaphor, or the scaffolding, in Mason's
words, but that is not necessarily quick or easy. Mathematical understanding can only be acquired
through arduous struggle. There is no royal road.

Moreover, the use of a tool to "get the answer" is not wrong in principle. There are times when it is
appropriate for students to use technology (whether a calculator, a symbol manipulator, or
manipulatives) to get the answer to a subtraction, or to square a binomial. The focus of a particular
lesson, perhaps a "real world" application that involves subtraction, may not be on the mechanics of
subtracting correctly, or on place value. In such a situation, students need to get the right answer
quickly, whether or not their conceptual understanding of how it is computed is solid.

If we were to deny students access to tools that make this possible, we would be joining forces with
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those who are trying to prevent students from using calculators, and would have little chance of
getting very far. By the way, another way to think about the "problem" that manipulatives make
difficult things easy is that they help weaker students pass required classes and exams -- a short-term
but real issue for them. They do not have the luxury we have to say that those classes and exams
--which most of us passed comfortably and thereby gained access to the academy-- are garbage. As
one of my students put it: "The Lab Gear saved my butt!"

Of course, there should be times when the focus of the lesson is on place value and on comparing
strategies for subtracting two-digit numbers. At such times, we may use manipulatives, or not, but in
either case, we need to devise lessons which will get to the underlying concepts, not merely on
"getting the answer." This is best achieved through discussion.

* Conversations
Some educators object to the use of manipulatives because they do not reflect mathematical
abstractions accurately enough. For example, it is pretty much impossible to represent certain
fractions with base ten blocks, and the Lab Gear blocks that represent variables are of a fixed size,
which seems to be a contradiction in terms.

However it is not the primary role of a transitional environment for learning to be accurate. At the
limit, the most accurate representation we have of the concepts of algebra is the traditional notation.
If accuracy of model is all that is needed for pedagogical effectiveness, our job would be easy! In
fact, the primary purpose of manipulatives is not to be accurate, but to offer an opportunity for
discussion among students, and for discussion between the different cultures of student and teacher.
Jeremy Roschelle (1996) conducts an outstanding discussion of this issue in the context of designing
educational software for teaching physics. He correctly concludes: "... rather than merely
representing mental models accurately, designers must focus on supporting communicative
practices." In fact it turns out that the limitations of the manipulative model provides the spark for
some of the best discussions in the classroom.

Here is an anecdote related by Pat Thompson:

This is a great anecdote, which shows the power of manipulatives as a conversation starter. The
student may have made the suggestion because he was grappling with the question "how could this
one block represent 1000?" -- a profound question. Or perhaps the student has no clue about how
1000 differs from 100, or 10 or 1. In any case, the student would not have been better off if the base
ten blocks had been excluded from the classroom. It is precisely because of their presence that an
opportunity for a discussion of how and why one block can represent 1000 (or how and why 1000 is
different from 100, etc) arose. In most classrooms students do not have the opportunity or the context
to verbalize their thoughts and misunderstandings. A single discussion is not sufficient, of course, but
a fruitful discussion of student-designed representations for our numeration system could follow the
student's suggestion about apples, using apples, buttons or whatever. After such a discussion over a
period of days, the teacher (with the help of those students who already understand it) may be able to
re-introduce the base 10 blocks in a way that would be more meaningful to the student. Clearly, while
understanding the model cannot be equated with understanding the concept, not understanding base
ten blocks is diagnostic of not understanding numeration in base ten.

To take another example, consider the story of Adam, the fourth grader who found that "if you take

A student suggested that the "thousand" base-10 block could be replaced by an apple. The teacher
asked what would then be used to represent 100, 10, and 1. The student replied that apples could be
used for everything.
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two consecutive numbers, you add the lower number and its square to the higher number, and you get
the higher number's square" (Bastable and Schifter, in this volume). As Bastable points out, writing
this in algebraic notation is enough to prove the correctness of Adam's assertion. However, in fourth
grade this route is closed, since to a nine-year old this amounts to meaningless gibberish. A priori, the
only way at that level to check the validity of that assertion is to try it with various numbers, which is
indeed what was done. But another way is open if we keep in mind the strategy used by the students
in Rigoletti's third grade, who represented square numbers with square arrangements of unit squares.
[figure 10] An extra level in the process of generalization could be seen in the Lab Gear
representation of the same phenomenon.Such an arrangement could be arrived at through questions
such as the following [figure 11]:

How would you represent two consecutive numbers with the Lab Gear?
How would you represent the square of each of these numbers?
How would you represent Adam's conjecture?

A highly skilled teacher is able to generate worthwhile discussions with students with or without
manipulatives. Manipulatives, because they are, in Papert's (1980) terminology "objects to think
with" and objects to talk about, have the potential to improve discourse in more classes. They are
often a teacher's first step away from traditional instruction, and they can lead to decisive changes in



classroom culture: the introduction of collaborative work, the option for students to create exercises
instead of merely solving them, an opportunity for the teachers to enjoy a new window on student
understanding or lack of it, and so on.

* States vs actions
Jim Kaput (in press) argues that computer-based "manipulatives" would have advantages over
physical ones, because of the computer's ability to record processes, or to display variables with
varying sizes. It may well be that such software could be designed, tested, and distributed to schools
along with the necessary hardware. However, the reality is that physical manipulatives will reach
many, many more classrooms much, much sooner. So it is useful to ponder whether what Kaput calls
the "eternal present" of manipulatives can be transcended with adequate design, lessons, and
teaching.

Kaput points out that when modeling 2+3=5 with unifix cubes, for example, by the time one has
combined 2 and 3 blocks together, one sees 5 blocks, but the original 2 and 3 blocks, as well as the
process of combining them has vanished. True enough, though he admits that color can help
overcome this. For multiplication, the Lab Gear corner piece allows students to see both the factors
and the products when multiplying, or factoring. This is a design solution. But more significantly, the
activity "add 2 to 3 using Unifix cubes" is just about the least interesting activity imaginable in this
domain. Using Krutetskii's and Rachlin's insights, we can readily come up with the following
improvement: "What are all the ways that you can combine sets of Unifix cubes in order to get a total
of 5 cubes?" This encourages students to keep records of which pairs worked, gives them a chance to
notice patterns (using one less red cube requires using one more green cube, for example), and
focuses their attention on the process rather than (or in addition to) the result. It also provides the
springboard to a question for the top students in the class, who can start investigating the question of
how many partitions of 5 are possible.

Kaput also argues that the computer makes it possible to have "hot" links between representations on
the screen. In other words, when you manipulate symbols on the screen, images of blocks could react
to the manipulations as you go. This is nice, and some software along these lines exists to show the
connections between different representations of functions. However, we should not be lulled into
thinking that an on-screen connection guarantees a connection in the student's mind. The key
question is not one of equipment -- it is how to use the available equipment well. In spite of Papert's
predictions (1980), the technology of the last 15 years did not bring about an educational revolution. I
see no reason to believe this will change in the next 15 years.

Tool-based Learning
Deborah Ball, in a brilliant paper (1992), warns against the "magical hopes" that many teachers have
about manipulatives. She writes: "Manipulatives -- and the underlying notion that understanding
comes through the finger tips -- have become part of educational dogma." She gives several examples
of the mere use of manipulatives failing to deliver understanding, and concludes that manipulatives
cannot be used effectively without adequate teacher preparation, and without better understanding of
how children learn. She also acknowledges that "Manipulatives undoubtedly have a role to play ... by
enhancing the modes of learning and communication available to our students." I strongly agree with
Ball's concerns and insights, and do not claim magical powers for manipulatives. In fact, in my own
teaching, manipulatives have always been one tool among many. I use computers and calculators,
graph paper, and group discussion. Sketches on the chalkboard, whether drawn by me or by my
students, play a crucial role in my class, and probably in any effective math teachers' class. The use
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of any one tool is not a rejection of others!

On the other hand, teachers' interest in manipulatives provides us with an opportunity to work with
them. In the past few years, I have been asked to introduce in-service and pre-service teachers to the
Lab Gear dozens of times. These workshops have given me the opportunity to work with hundreds,
perhaps thousands of teachers, and the discussion inevitably goes beyond the technicalities of the Lab
Gear, to important mathematical, curricular, and pedagogical questions, such as the shift in emphasis
from "skills" to conceptual understanding.

At any rate, over years of work with both students and teachers, I have learned that:
Manipulatives are an extraordinary tool to help reach weaker students, but that is not their
only purpose: they are a useful way to improve education in any math class.
Often, teachers are ineffective because of their own limited understanding of the material.
Manipulatives provide an environment to teach math as well as pedagogy to teachers.
Manipulatives do not make math "easy", and teachers may need to learn something in order to
use them. The increased understanding will serve them whether or not they use manipulatives
in their class in the immediate future.
There is no sense in using manipulatives in a "do as I say" algorithmic model which only
perpetuates antiquated pedagogy. It is far more effective to use them as a setting for problem
solving, discussion, communication, and reflection.
Manipulatives should be a complement to, not a substitute for other representations. In
particular, Cartesian graphing and other pictorial representations are extremely important.
Deliberate attention must be paid to help students transfer what they know in the context of
the manipulatives to other representations, including symbolic, numerical, and graphical.
Transfer does not just happen spontaneously.

The purpose of manipulatives is to enhance discourse, and to provide a locus for the more theoretical
discussion of the numeration system (in the case of base 10 blocks) or of the structures underlying
aspects of the field structure of the number system and its algebra (in the case of both Base 10 blocks
and the Lab Gear). That theoretical dimension runs the risk of being buried or forgotten if we go
full-steam into the currently fashionable direction of "real world" problems.

Fun Math
In most schools, early mathematics means arithmetic. Many elementary school teachers are not
comfortable with math topics beyond basic arithmetic. Most people, including elementary school
students and their parents, are convinced that mathematics is arithmetic. Until recently, the NCTM
journal for elementary school teachers was called The Arithmetic Teacher, revealing that confusion
even among the leaders in the profession.

Below, I list some "fun" domains for early mathematics. For each domain, I hint at some interesting
problems or materials, most of which I have used with young children in my ten years as an
elementary school math specialist and classroom teacher. Obviously, this is not a comprehensive
curriculum, just an attempt at giving some substance to the claim that a lot more than arithmetic is
possible in elementary school.

* Perimeter Patterns
Pattern blocks [Figure 12] are available in many elementary schools. They can be used as a source of
interesting perimeter pattern problems.
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For example, by making a figure with alternating squares and hexagons, [Figure 13], we get the
following sequence of perimeters: 4, 8, 10, 14, 16, 20, 22, ... The sequence is rich in patterns that
students can explore. What kinds of numbers can be found on this list? What kinds of numbers
cannot? What would the hundredth number be?

A simpler sequence is obtained by adding the square and hexagon as a unit, yielding the sequence: 8,
14, 20, 26, ... Simpler yet are sequences built out of using only squares or only hexagons. Such
sequences are arithmetic, and students can learn to represent them symbolically.

Another question from the same domain: Is it possible to create a pattern block figure with an odd
perimeter?

* Angles
The same blocks can be used to introduce the concept of angle, which is notoriously difficult to
introduce to tenth graders if they haven't worked with it before. Here is a sequence of activities using
the pattern blocks. (Note: pattern block hexagons are yellow, squares are orange, and so on.) These
will take several days to complete.

In how many ways can you surround a point with pattern blocks using only yellow blocks?
using only blue blocks? using two colors? etc.

1.

There are 360 degrees around a point. Use this information to find the measurement of the
angles in each pattern block.

2.
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What is the sum of the angles in each of the pattern blocks? Using one or more pattern blocks,
make a polygon for which the sum of the angles is greater than that for the quadrilaterals, but
less than that for the hexagon. Create a 7-gon, an 8-gon, etc with pattern blocks. In each case,
find the sum of the angles. What is the pattern?

3.

Polygon walks: give instructions to a classmate to walk each pattern block shape. (Example:
take a step forward, turn right 90 degrees, etc.) Give instructions to walk a two-pattern block
polygon. This activity can lead to turtle geometry work on computers.

4.

* Geometric Puzzles:
Geometric puzzles such as tangrams and pentominoes offer opportunities for lessons on similarity,
congruence, symmetry, area, and more. (Picciotto, 1986. See also EDC's Elementary Science Study
_Tangrams_ unit from the sixties.)

I will give two examples from the world of pentominoes. Pentominoes are the twelve distinct shapes
that can be obtained by joining five squares edge-to-edge [figure 14].

What rectangles can be covered exactly by one or more pentominoes from one set ?
(Pentominoes cannot be overlapped or reused.) To get this discussion started, students can try
to cover rectangles such as: 3 by 5, 2 by 5, 2.5 by 6, 2 by 10, 3 by 6, and so on. Students
discover that pentomino rectangles must satisfy these conditions:

whole number sides
an area that is a multiple of 5, between 5 and 60, inclusive (except for area 10,
surprisingly)

1.

If you double (or triple) the dimensions of a given pentomino, can the resulting shape be
covered with pentominoes? How many pentominoes are needed to do it?

2.

Many other interesting questions can be asked about pentominoes, and about the generalized
polyominoes. A related domain is superTangrams, shapes obtained by joining four isosceles right
triangles edge-to-edge. In this case, problem 2 above becomes a lot richer and more complex,
because in addition to doubling and tripling the dimensions, it becomes possible to get similar figures
with area equal to twice or eight times the original area.

* Lattice geometry:
Geoboards and dot paper offer opportunities for lessons on area (including Pick's formula), Cartesian
coordinates, ratio, similarity, slope, and more.

Two examples for upper elementary school:

How many different-sized squares can one find in an 11 by 11 geoboard? This leads to a
major hunt which includes experiences about slope (how to find perpendicular sides if the
vertices are all on lattice points), and area (the area of a "tilted" square can be obtained
without the Pythagorean Theorem by subtracting right triangles from "horizontal" squares).
(See Picciotto and Wah, 1993 for more on this.)

1.
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Pick's formula relates the area of a polygonal shape with all vertices on lattice points to the
number of lattice points on the circumference, and to the number of interior lattice points.
With some guidance and much exploration, students can discover this formula.

2.

Many interesting explorations can also happen at a more elementary level, and others (leading to
strengthen ideas about angles) are possible on the so-called circular geoboard, which features pegs
spaced at 15 degree intervals on a circle, as well as a central peg.

* Graph Theory:
The Koenigsberg bridge problem, Euler's formula on the plane or in polyhedra. The two-color
theorem (what maps can be colored in two colors? how can one change a three- or four-color map to
a two color map by adding edges?)

The discovery of Euler's formula, like Pick's, makes for particularly interesting lessons, because they
each involve three variables instead of the usual two -- which makes for more protracted
investigations.

And there are more arenas for the development of early mathematical thinking: programmable
computer environments such as Logo, Boxer, spreadsheets, etc; logic with attribute blocks, the game
of Set, etc.; art with tiling, symmetry, Escher and Islamic designs; data analysis and probability; etc. I
hope it is clear that children need not be fed only a steady diet of number crunching. Plenty of
interesting mathematical work can be done in a wide range of mathematical domains such as the ones
listed above.

While I in no way want to diminish the importance of work with numbers, we must acknowledge that
by de-emphasizing multi-digit paper-pencil arithmetical algorithms at the upper elementary levels,
we are opening up hundreds of hours for other mathematical work. Instead of filling that with an
attempt to teach the traditional Algebra 1 course to younger and younger students (an unfortunate
trend in many school districts), we should seize the opportunity to broaden the curriculum. The point
is not that students need to know Euler's formula in sixth grade, but that they need to be engaged in
worthwhile mathematical thinking at an appropriate level.

Conclusion
I have tried to articulate a vision of elementary school mathematics that would be considerably richer
than the current fixation on arithmetic. It is also richer than some reform proposals. The following
maps may help us rethink early mathematics:

Where we are:

Where we should go (with an emphasis on operations throughout):

That vision stems from some political assumptions, and it has political consequences.

Arithmetic ---> "Algebra 1" ---> Secondary Math

Arithmetic and number theory

Quantitative reasoning and the rational numbers

"Fun Math" as described above

Manipulatives and computer programming
(to support the above)

---> Secondary Math
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The assumptions: mathematics education is not just about preparing students for "practical" matters
and helping the economy. It is an important part of human culture of sense-making, and should be
introduced as such to all students from a young age. In addition to being useful, math is fun and
beautiful. We should not lose sight of this as we attempt to make the curriculum more relevant
through greater reliance on applications.

The consequences: we need math specialists in all elementary schools. It is not likely that this vision
or anything like it can be implemented without having people with at least a BA in mathematics as
well as some pedagogical sophistication involved in the front lines. This is more important than any
particular curricular decision, because such people in the schools would transform the daily
experience of math education with whatever curriculum.

One could argue that a massive effort aimed at training elementary school teachers, through both
pre-service and in-service work, is needed. I don't disagree with this, but one math specialist can
work with approximately ten classrooms, and provide an on-going presence that will have much
more impact on teachers than a one-shot training session. That ten-to-one ratio also means that
teacher-training budgets can have an impact that is one order of magnitude greater.

Finally, a national campaign to put math specialists in all elementary schools is a program that
teachers and parents in all communities could support even if they are not ready to make major
curricular changes. Who knows, they may be able to talk politicians, funding agencies, and
corporations into supporting such an effort. Whether or not we succeed in making curricular changes
in the short run, a national corps of math specialists could be the communication line (in all
directions) between the mathematics community, the math ed community, and the elementary
schools' students, parents, and teachers.
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