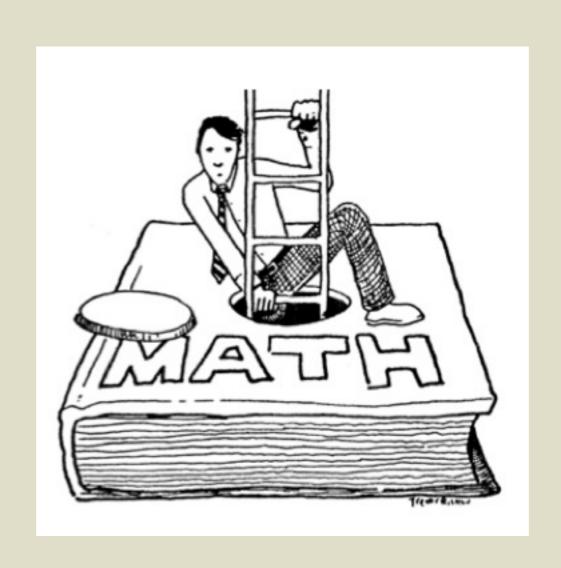
Escape from the Textbook!

Carlos Cabana ccabana@pacbell.net

Mission High School SFUSD

Henri Picciotto henri@MathEducationPage.org www.MathEducationPage.org

> Center for Innovative Teaching Urban School of San Francisco


- ♦ Students are different
- ♦ Classes are different
- ♦ Teachers are different

One size does not fit all

We need to be flexible and eclectic...

... but much of the time, we are prisoners of the textbook

Escape from the Textbook!

Do you escape...

- ♦ For a day?
- ♦ For a unit?
- ♦ For a whole course?

Do you escape...

- ♦ Alone?
- ♦ With colleagues?
- ♦ As a department?

(insert Carlos Cabana's slides)

Ratios and Proportions

What You'll Learn

Determine whether two ratios form a proportion. Solve proportions.

Vocabulary

ratio proportion extremes means rate scale

How are ratios used in recipes?

The ingredients in the recipe will make 4 servings of honey frozen yogurt. Keri can use ratios and equations to find the amount of each ingredient needed to make enough yogurt for her club meeting.

rozen Yogurt
2 eggs, beaten
2 cups plain low-fat
yogurt
1 tablespoon vanilla

explanation

RATIOS AND PROPORTIONS A ratio is a comparison of two numbers by division. The ratio of x to y can be expressed in the following ways.

Ratios are often expressed in simplest form. For example, the recipe above states to for 4 servings you need 2 cups of milk. The ratio of servings to milk may be written as 4 to 2, 4:2, or $\frac{4}{2}$. Written in simplest form, the ratio of servings to milk can be written as 2 to 1, 2:1, or $\frac{2}{1}$.

Suppose you wanted to double the recipe to have 8 servings. The amount of mil required would be 4 cups. The ratio of servings to milk is $\frac{8}{4}$. When this ratio is simplified, the ratio is $\frac{2}{1}$. Notice that this ratio is equal to the original ratio.

$$\begin{array}{ccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

An equation stating that two ratios are equal is called a **proportion**. So, we can state that $\frac{4}{2} = \frac{8}{4}$ is a proportion.

words

Study Tip

Reading Math
A ratio that is equivalent
to a whole number is
written with a
denominator of 1.

Example 1 Determine Whether Ratios Form a Proportion Determine whether the ratios $\frac{4}{5}$ and $\frac{24}{30}$ form a proportion.

$$\begin{bmatrix} & & 1 \\ \frac{4}{5} & = & \frac{4}{5} \\ & & \downarrow & 1 \end{bmatrix}$$

$$\begin{bmatrix} & & 6 \\ \frac{24}{30} & = \frac{4}{5} \\ L_{\div 6} \end{bmatrix}$$

The ratios are equal. Therefore, they form a proportion.

Another way to determine whether two ratios form a proportion is to use cross products. If the cross products are equal, then the ratios form a proportion.

xample 2 Use Cross Products

Use cross products to determine whether each pair of ratios form a proportion.

a.
$$\frac{0.4}{0.8}$$
, $\frac{0.7}{1.4}$

$$\frac{0.4}{0.8} \stackrel{?}{=} \frac{0.7}{1.4}$$
 Write the equation.

$$0.56 = 0.56$$
 Simplify

The cross products are equal, so $\frac{0.4}{0.8} = \frac{0.7}{1.4}$. Since the ratios are equal, they form a proportion.

$$\frac{6}{8}$$
, $\frac{24}{28}$

$$\frac{6}{8} \stackrel{?}{=} \frac{24}{28}$$
 Write the equation.

$$6(28) \stackrel{?}{=} 8(24)$$
 Find the cross products.

The cross products are not equal, so $\frac{6}{8} \neq \frac{24}{28}$. The ratios do not form a proportion.

In the proportion $\frac{0.4}{0.8} = \frac{0.7}{1.4}$ above, 0.4 and 1.4 are called the **extremes**, and 0.8 and 0.7 are called the means.

Key Concept

Means-Extremes Property of Preportion

 Words In a proportion, the product of the extremes is equal to the product of the means.

• Symbols If
$$\frac{a}{b} = \frac{c}{d}$$
, then $ad = bc$.

Examples Since
$$\frac{2}{4} = \frac{1}{2}$$
, 2(2) = 4(1) or 4 = 4.

the formula

examples

SOLVE PROPORTIONS You can write proportions that involve a variable. To solve the proportion, use cross products and the techniques used to solve other equations.

Example 3 Solve a Proportion

Solve the proportion
$$\frac{n}{15} = \frac{24}{16}$$
.

$$\frac{n}{15} = \frac{24}{16}$$
 Original equation

$$16(n) = 15(24)$$
 Find the cross products.

$$16n = 360$$
 Simplify.

$$\frac{16n}{16} = \frac{360}{16}$$
 Divide each side by 16.

$$n = 22.5$$
 Simplify.

The ratio of two measurements having different units of measure is called a rate For example, a price of \$1.99 per dozen eggs, a speed of 55 miles per hour, and a salary of \$30,000 per year are all rates. Proportions are often used to solve problem involving rates.

Example 4 Use Rates

BICYCLING Trent goes on a 30-mile bike ride every Saturday. He rides the distance in 4 hours. At this rate, how far can he ride in 6 hours?

Explore Let m represent the number of miles Trent can ride in 6 hours.

miles
$$\rightarrow \frac{30}{4} = \frac{m}{6} \leftarrow \text{miles}$$
hours $\rightarrow \frac{30}{4} = \frac{m}{6} \leftarrow \text{hours}$

Solve
$$\frac{30}{4} = \frac{m}{6}$$
 Original proportion

$$30(6) = 4(m)$$
 Find the cross products.

$$180 = 4m$$
 Simplify.

$$\frac{180}{4} = \frac{4m}{4}$$
 Divide each side by 4.

$$45 = m$$
 Simplify.

Examine If Trent rides 30 miles in 4 hours, he rides 7.5 miles in 1 hour. So, in 6 hours, Trent can ride 6 × 7.5 or 45 miles. The answer is correct.

Since the rates are equal, they form a proportion. So, Trent can ride 45 miles in 6 hours.

again, on Solving proportions: examples

More About...

Crater Lake =
Crater Lake is a volcanic orater in Oregon that was formed by an explosion 42 times the blast of Mount St. Helens.

Source: travel excle corn

Example 5 Use a Scale Drawing

• CRATER LAKE The scale of a map for Crater Lake National Park is 2 inches = 9 miles. The distance between Discovery Point and Phantom Ship Overlook on the map is about 1³/₂ inches. What is the distance between these two places?

Let d represent the actual distance.

$$scale \rightarrow \frac{2}{9} = \frac{1\frac{3}{4}}{d} \leftarrow scale$$

actual $\rightarrow \frac{2}{9} = \frac{1}{4} \leftarrow scale$

$$2(d) = 9(1\frac{3}{4})$$
 Find the cross products.

$$2d = \frac{63}{4}$$
 Simplify

$$2d+2=\frac{63}{4}+2$$
 Divide each side by 2.

$$d = \frac{63}{8}$$
 or $7\frac{7}{8}$ Simplify.

The actual distance is about $7\frac{7}{8}$ miles.

wrap-up

Check for Understanding

Concept Check

- 1. OPEN ENDED Find an example of ratios used in advertisements.
- 2. Explain the difference between a ratio and a proportion.
- 3. Describe how to solve a proportion if one of the ratios contains a variable.

Guided Practice Use cross products to determine whether each pair of ratios form a proportion. Write yes or no. 4. $\frac{4}{11}$, $\frac{12}{33}$

4.
$$\frac{4}{11}$$
, $\frac{12}{33}$

5.
$$\frac{16}{17}$$
, $\frac{8}{9}$

6.
$$\frac{2.1}{3.5}$$
, $\frac{0.5}{0.7}$

Solve each proportion. If necessary, round to the nearest hundredth.

7.
$$\frac{3}{4} = \frac{6}{x}$$

8.
$$\frac{a}{45} = \frac{5}{15}$$

9.
$$\frac{0.6}{1.1} = \frac{n}{8.47}$$

Application 10. TRAVEL The Lehmans' minivan requires 5 gallons of gasoline to travel 120 miles. How much gasoline will they need for a 350-mile trip?

Practice and Apply

mework Help

For ercises	See Example	es
11-18	1,2	
19-30	3	
51, 32	4	
53, 34	5	

tra Practice page 827. Use cross products to determine whether each pair of ratios form a proportion. Write yes or no.

		,
11	3	21
11.	2'	14

12.
$$\frac{8}{9}$$
, $\frac{12}{18}$

13.
$$\frac{2.3}{3.4}$$
, $\frac{3.0}{3.6}$

14.
$$\frac{4.2}{5.6}$$
, $\frac{1.68}{2.24}$

16.
$$\frac{5}{2}$$
, $\frac{4}{1.6}$

€EUSA

SPORTS For Exercises 17 and 18, use the graph at the right.

- Write a ratio of the number of gold medals won to the total number of medals won for each country.
- Do any two of the ratios you wrote for Exercise 17 form a proportion? If so, explain the real-world meaning of the proportion.

all-time	nas a med	top lals t	able			
The USA, whi Summer Olyn has dominate over the year: Olympics med	npics w	rith 97 r nedal sta	medals, andings	120		
			_		14 (40)	
2000	Gold		Bronze	Total		
USA	871	659	Bronze 586	Total 2,116		
2000			_	-		
USA	871	659	_	-		
USA USSR/Russia¹	871 498	659 409	586 371	-	製し変	
USA USSR/Russia ¹ Germany ²	871 498 374	659 409 392	586 371	-	学	
USA USSR/Russia ¹ Germany ² Great Britain	871 498 374 180	409 392 233	586 371	-	學	

By Ellen J. Horrow and Marcy E. Mullins, USA TODAY

Solve each proportion. If necessary, round to the nearest hundredth.

19.
$$\frac{4}{x} = \frac{2}{10}$$

20.
$$\frac{1}{v} = \frac{3}{15}$$

21.
$$\frac{6}{5} = \frac{x}{15}$$

 Competed as the Unified Team in 1992 after the breakup of the Soviet Union
 Totals include medals won by both East and West Germany.

22.
$$\frac{20}{28} = \frac{n}{21}$$

23.
$$\frac{6}{8} = \frac{7}{a}$$

24.
$$\frac{16}{7} = \frac{9}{b}$$

25.
$$\frac{1}{0.19} = \frac{12}{n}$$

$$26. \ \frac{2}{0.21} = \frac{8}{n}$$

27.
$$\frac{2.405}{3.67} = \frac{s}{1.88}$$

$$28. \ \frac{7}{1.066} = \frac{2}{9.65}$$

$$29. \ \frac{6}{14} = \frac{7}{x-3}$$

30.
$$\frac{5}{3} = \frac{6}{x+2}$$

"practice and apply"

- WORK Seth earns \$152 in 4 days. At that rate, how many days will it take him to earn \$532?
- 32. DRIVING Lanette drove 248 miles in 4 hours. At that rate, how long will it take her to drive an additional 93 miles?
- 33. BLUEPRINTS A blueprint for a house states that 2.5 inches equals 10 feet. If the length of a wall is 12 feet, how long is the wall in the blueprint?
- 34. MODELS A collector's model racecar is scaled so that 1 inch on the model equals 6¹/₄ feet on the actual car. If the model is ²/₃ inch high, how high is the actual car?
- 35. PETS A research study shows that three out of every twenty pet owners got their pet from a breeder. Of the 122 animals cared for by a veterinarian, how many would you expect to have been bought from a breeder?
- 36. CRITICAL THINKING Consider the proportion a:b:c = 3:1:5. What is the value of \(\frac{2a + 3b}{4b + 3c}\)? (Hint: Choose different values of \(a, b\), and \(c\) for which the proportion is true and evaluate the expression.)
- WEITING IN MATH Answer the question that was posed at the beginning of the lesson.

How are ratios used in recipes?

Include the following in your answer:

- an explanation of how to use a proportion to determine how much honey is needed if you use 3 eggs, and
- · a description of how to alter the recipe to get 5 servings.

38. Which ratio is not equal to 9/17?

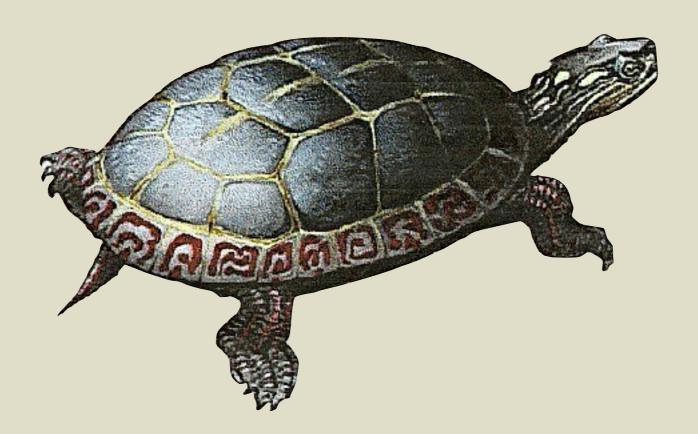
D 30

- In the figure at the right, xy = 2:3 and y:z = 3:5.
 If x = 10, find the value of z.
 - 15
- (B) 2
- © 25

Benefits of escaping

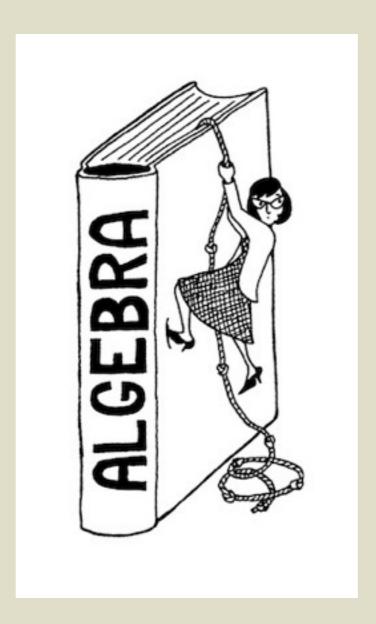
- ♦ Variety
- ♦ Reaching different types of learners
- ♦ Deeper student understanding

Deeper teacher understanding!


- ♦ Moving topics within a course
- ♦ Moving topics between courses
- ♦ Eliminating topics?
- Prioritizing topics

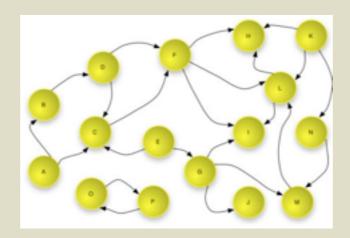
How?

- ♦ Teacher collaboration is the engine
- ♦ Create a teacher culture of constant evaluation
- ♦ Schedule some summer work
- ♦ Go back and forth: pedagogy and curriculum
- ♦ Set priorities! / Be realistic


Patience

Slow is fast, and fast is slow!

Collaboration


Ideally, collaboration with colleagues at school, but why not with others?

Escape from the Textbook! www.EscapeTheTextbook.org www.edWeb.net/escape

Online network

In-person meetings (in the Bay Area)

- ♦ Do math together
- ♦ Discuss pedagogy
- ♦ Share activities

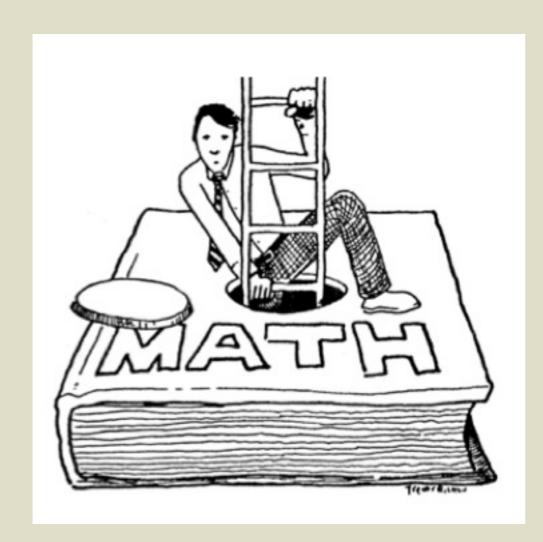
♦ Do math together

Paul Zeitz, University of San Francisco author of *The Art and Craft of Problem Solving* "Games, investigation, and problem solving"

♦ Discuss pedagogy

Jo Boaler, Stanford University author of What's Math Got To Do With It? "The Many Colors of Algebra — Engaging Disaffected Students Through Collaboration and Agency."

- ♦ Share activities
- Middle School
- Algebra 1
- Geometry
- Algebra 2 / Precalc
- Precalc / Calculus
- Statistics


Saturday, February 12

8:45 am to 3:00 pm

at the Urban School of San Francisco

1563 Page St, SF, 94117

\$25

Escape from the Textbook!

Conference info and registration:

www.EscapeTheTextbook.org

Online network:

www.edWeb.net/escape