Geometry of Function Diagrams

Geometry Reminders

Fact P: In a quadrilateral, if a pair of opposite sides is both equal and parallel, then the quadrilateral is a \qquad . (You can prove this with the help of congruent triangles.)
Opposite sides of a parallelogram are equal.
Fact T: If the corresponding angles determined by a transversal are equal, then the two lines are \qquad . If two lines are parallel, then corresponding angles are \qquad -.

Fact AA: If two pairs of corresponding angles in two triangles are equal, then the triangles are

Theorem: In the function diagram for $\mathbf{y}=\mathbf{m x}+\mathrm{b}$, either all in-out lines are parallel, or they meet in one point

1. On the diagram of $y=m x+b$ shown on the right, how long are the vertical sides of the quadrilateral?
2. If $m=1$, show that the quadrilateral is a parallelogram (and therefore that the in-out lines are parallel.)

Since x is a generic input, you have proved that in the case where $\mathrm{m}=1$, all in-out lines are parallel to the one through 0 , and therefore to each other.

If $m \neq 1$, the quadrilateral is not a parallelogram, since opposite sides are unequal, and therefore the two in-out lines meet at a point we will call F .

Strategy for proof: We would like to prove that all the in-out lines go through that same point F, the focus. To do that, we will show that the position of F on the in-out line $(0, b)$ does not depend on the choice of x.

Consider the diagram below. Let us say that the length $0 \mathrm{~b}=\mathrm{z}$. This number does not depend on x . (It depends on b, and on how wide apart the axes are.)
4. Show that the triangles Fyb and Fx0 are similar, with ratio of similarity m.

It follows that $\frac{\mathrm{Fb}}{\mathrm{F} 0}=\mathrm{m}$, and therefore $\frac{\mathrm{F} 0+0 \mathrm{~b}}{\mathrm{~F} 0}=\mathrm{m}$
5. Use algebra to show that $\mathrm{F} 0=\frac{\mathrm{z}}{\mathrm{m}-1}$ if $\mathrm{m} \neq 1$

So F is in the same position for any input x . In other words, all the in-out lines go through the focus, which is what we wanted to prove.

Theorem: If a function diagram has a focus, then the equation is of the form $\mathbf{y}=\mathbf{m x}+\mathbf{b}$
In other words, if all the in-out lines of a function diagram meet in one point F , then the image of all points x is given by the same formula, in the form $y=m x+b$.

Strategy for proof: we will use similar triangles to help us find a formula for the output corresponding to the input x .

1. Using a ruler, draw in-out lines for 0 and x . Label the output for 0 as b, and the output for x as y.

Call the ratio $\mathrm{Fb} / \mathrm{F} 0=\mathrm{m}$.
2. Show that the two triangles are similar, with ratio m .
3. Find the ratio of the vertical sides, and solve for y.

Since m and b are constants that depend only on F's position, and since x was a completely generic point, we have proved the theorem.

Theorem: If all the in-out lines of a function diagram are parallel, then the equation is of the form $\mathrm{y}=\mathrm{x}+\mathrm{b}$

In other words, if all the in-out lines are parallel, then the image of all points x is given by the same formula, in the form $\mathrm{y}=\mathrm{x}+\mathrm{b}$.

Strategy for proof: we will use a property of parallelograms to help us find a formula for the output corresponding to the input x .
4. Why is the quadrilateral a parallelogram?
5. Use a property of parallelograms to show that $y=x+b$

Since b does not depend on x , and since x is a completely generic point, we have proved the theorem.

