Connecting the Dots Geoboard Area

Henri Picciotto henri@MathEducationPage.org www.MathEducationPage.org

Lessons from

Geometry Labs Henri Picciotto

(free download at www.MathEducationPage.org)

as well as...

interesting related unsolved problems

Working on a lattice

Find geoboard shapes with area 15

Find as many geoboard squares of different sizes (and their areas) as you can.

Hint: there are more than 10

What is the area of the red square?

outer square: 62

each triangle: $\frac{2 \cdot 4}{2} = 4$

inner square: $36 - 4 \cdot 4 = 20$

Generalize

outer square: $(a + b)^2$

each triangle: $\frac{a \cdot b}{2}$

inner square: $(a + b)^2 - 2ab = a^2 + b^2$

Area of squares			
Small	Medium	Large	

Area of the red square: 20

Area of the green square: 5

Side of the red square: $\sqrt{20}$

Side of the green square: $\sqrt{5}$

Conclusion: $\sqrt{20} = 2\sqrt{5}$!

Simplify: $\sqrt{147}$

$$\sqrt{147} = \sqrt{49.3} = 7\sqrt{3}$$

Distance to the origin

1. What is the distance from each geoboard peg to the origin? Write your answers in simple radical form on the figure below.

Discussion

- **A.** Discuss any patterns you notice in the distances. Use color to highlight them on the figure. In particular, refer to the following features.
 - **a.** Symmetry
 - **b.** Slope

Puzzle

Draw a polygon *following grid paper lines*. No crossings, no holes.

Now inscribe a square in it, with all its vertices at lattice points on the perimeter of the polyomino.

Conjecture: it is impossible to draw a polyomino that does *not* have such a square inscribed in it.

Pick's Formula

Inside dots	Bound. dots	Area
8		

Proving Pick

$$A = i + \frac{b}{2} - 1$$

The rest of the proof (outline)

www.MathEducationPage.org/geometry-labs/pick/

No Three in a Row

Consider an n by n lattice.

Is it always possible to choose 2n points in it so that no three points are in a line?

Challenge

10 points on a 5 by 5 lattice, no three in a row

Geoboard Slope

Heilbronn's Triangle

Place six points in a 5 by 5 array so that the triangle of *least* area has as *great* an area as possible

Challenge: n points in an 11 by 11 array

Henri Picciotto henri@MathEducationPage.org www.MathEducationPage.org