Infinity: An Alternate Elective After Algebra 2

∞
Henri Picciotto
The Urban School of San Francisco henri@MathEducationPage.org www.MathEducationPage.org

Infinity: An Alternate Elective After Algebra 2

∞

Henri Picciotto

The Urban School of San Francisco
math-ed@picciotto.org
www.picciotto.org/math-ed

not tracked / grade levels \& acceleration

Infinity overview	
Who takes the class	
Four topics	Juniors, before Calculus Readings Algebraiors, instead of review or in addition to Calculus
Computer tools	

not all superstars

Infinity OVElView	
Who takes the class	
Four topics	Infinite sets
Readings	Proof
Algebra review	Chaos
Computer tools	

Infinity overview	
Who takes the class	Galileo,
Four topics	Jorge Luis Borges, Douglas Hofstadter,
Readings	Martin Gardner, Lewis Carroll,
Algebra review	James Gleick, Scientific American,
Computer tools	...

Infinity OVElView	
Who takes the class	$\begin{array}{l}\text { prime numbers, } \\ \text { algebraic fractions, } \\ \text { Fimilarity, }\end{array}$
Reardings	$\begin{array}{l}\text { proportions, } \\ \text { sequences and series, } \\ \text { iteration, } \\ \text { logarithms, } \\ \text { complex numbers, }\end{array}$
Algebra review	\ldots

Infinity OVelview	
Who takes the class	
Four topics	Fathom
Readings	Boxer
Algebra review	
Computer tools	

Boxer is a key part of the course, but I won't show that part.

Infinite sets Proof Chaos Fractals	
	Galileo
	$1564-1642$

Get two people to read the dialogue

Infinite sets Proof Chaos Cractals	
	Georg Cantor
	$1845-1918$

Equivalence

Two sets are equivalent if their elements can be put in a one-to-one correspondence. Example:

Equivalence

Two sets are equivalent if their elements can be put in a one-to-one correspondence. Example:

$$
\prod_{\{1,2,3,4, \ldots\}}^{\{0,1,2,3, \ldots\}}
$$

Cabri file: intervals


```
Infinite sets
Proof
Chaos
Fractals
```


Thinking about Infinity

```
Infinite sets
Proof
Chaos
Fractals
```


Prime Numbers

Proof by contradiction

Countable Infinite Sets

An infinite set is said to be countable if it is equivalent to the natural numbers.
Example:
the integers
$\{0,1,-1,2,-2,3,-3, \ldots\}$

Countable Infinite Sets

An infinite set is said to be countable if
it is equivalent to the natural numbers.
Example:
the rationals

$$
\begin{array}{l|l|c|c}
\frac{2}{-2} & \frac{2}{-1} & \leftarrow \frac{2}{1} \leftarrow \frac{2}{2} \\
\frac{1}{-2} & \frac{1}{-1} & \frac{1}{1} & \frac{1}{2} \\
\frac{1}{1} & \frac{0}{-1} & \frac{0}{1} & \frac{0}{2} \\
\frac{0}{-2} & \frac{1}{1} & \\
\frac{-1}{-2} & \frac{-1}{-1} & \frac{-1}{1} \rightarrow \frac{-1}{2} \\
\frac{-2}{-2} & \frac{-2}{-1} & \frac{-2}{1} \rightarrow \frac{-2}{2}
\end{array}
$$

"The Power of the Continuum"

The set of real numbers in the interval $[0,1]$ is not countable

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} d_{14} d_{15} \cdots \\
& r_{2}=0 . d_{21} d_{22} \quad d_{23} d_{24} d_{25} \cdots \\
& r_{3}=0 . d_{31} d_{32} d_{33} d_{34} d_{35} \cdots \\
& \begin{array}{l}
r_{4}=0 . d_{41} d_{42} d_{43} d_{44} d_{45} \cdots \\
r_{5}=0 . d_{51} d_{52}
\end{array} d_{53} d_{54} d_{55} \cdots . \\
& \text { ! } \\
& r=0 . d_{1} \quad d_{2} d_{3} \quad d_{4} d_{5} \cdots
\end{aligned}
$$

proof by contradiction
$[0,1]$ is equivalent to whole real line, and even to the whole plane

The Devil's Challenge

conjecture supplied by me

Generating conjectures

conjecture hinted at by me

Fibonacci conjectures

- start with student-generated conjectures, then make suggestions - proofs by mathematical induction, algebraic manipulation, a method involving dominoes, and...

Infinite sets	
Proof	
Chaos	
Fractals	

Iterating Linear Functions

- In Algebra 2, an engaging introduction to sequences, series, and limits
- In this class, a prelude to the study of iterating non-linear functions, dynamical systems, and chaos

