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Infinity: Teacher’s Guide 

“Infinity” is a course I taught at the Urban School of San Francisco, every other year from 1991 to 2011. 
I offer this Teacher’s Guide to other teachers who may be interested in teaching a version of the course, 
or some parts of it. (See <www.picciotto.org/math-ed/rights.html> for the conditions under which you 
have my permission to use these materials.) 

The worksheets do not add up to a full textbook. You will need to complement them with the suggested 
readings, or equivalent, and with teacher explanations. See also <www.picciotto.org/math-ed/infinity> 
for necessary or useful links. 

The course is intended for a teacher who is already familiar with the concepts covered. These materials 
should help such a teacher bring deep and powerful ideas, usually not tackled until college, to an 
advanced high school class. The approach of the worksheets is developmentally appropriate to high 
school, and does not attempt to present the material in the style of college math classes.  

The most common mistake in attempting to teach this material is to underestimate its difficulty, even for 
a strong high school student. It is crucial to provide adequate scaffolding between standard high school 
fare and the substantially more abstract subject matter of this course. This is what I prioritize in this 
packet, and in the lessons I link to on the Web site. It is also important to give enough time for the 
tougher ideas to penetrate and to offer opportunities to think about them repeatedly, in different forms 
and representations. 

The course consists of four units: 
Unit 1: Different-sized Infinities 
Unit 2: Chaos 
Unit 3: Mathematical Induction 
Unit 4: Fractals 

I listed them in the order I teach them, but the units are largely independent of each other, and one could 
probably teach them in a different order. Moreover, it is entirely possible for a teacher to incorporate one 
or more of the units in a precalculus class or other math elective, without needing to do the whole thing. 

Two common threads that tie the units together (besides of course infinity) are formal proof in units 1 
and 3, and computer-based mathematics in units 2 and 4.   

On the next page: the “welcome” sheet I hand out on the first day of the class. Aside from an overview 
of the topics, it includes a description of what will be expected of students. Note that it lists a substantial 
list of “algebra review” topics. These are mostly not represented in these materials, since I mostly use 
exercises from assorted textbooks – I am sure you can find your own way to do this (necessary and 
important!) review work.  



www.MathEducation.page ∞ © Henri Picciotto 

Infinity 

Welcome to Infinity!  

Here is the course description: 

We open the course with a discussion of ancient and modern paradoxes involving infinity, and 
students are introduced to Georg Cantor's discoveries. Students are expected to understand and 
be able to reproduce his key arguments about infinite sets, including some subtle proofs by 
contradiction.  

We explore various sequences and series, including especially the Fibonacci sequence. Much of 
this work requires the use of proof by mathematical induction, which students are expected to 
master.  

Students use computers to explore dynamical systems, and thus are introduced to chaos, a new 
multi-disciplinary mathematical science. In this context, we pay special attention to the iteration 
of the logistic function, a mathematical model of population dynamics. Students write a report 
about the underlying mathematics.  

We explore fractal geometry through students programming their own images and calculating 
fractal dimensions. The course ends with an introduction to dynamical systems in the complex 
number plane, including the study of Julia sets and of the Mandelbrot set, one of the most 
spectacular discoveries of contemporary mathematics.  

We make connections to literature, to the history of math, to science, and to other branches of 
math, including some reading and some review of algebra throughout the course. Iteration and 
recursion are concepts from mathematics and computer science that tie many of these topics 
together, and allow us to get a mathematical handle on infinity. 

Expect a difficult course and a lot of work, but it will be deep, exciting, and beautiful. 

The algebra review mentioned above includes: 

prime numbers,  

algebraic fractions,  

similarity and proportional reasoning,  

sequences and series,  

iteration of linear functions,  

logarithms,  

complex numbers,  

…and perhaps more. 

The reading comes from: 

Galileo, 

Jorge Luis Borges, 

Douglas Hofstadter, 

Martin Gardner, 

Lewis Carroll, 

James Gleick, 

Scientific American, 

… and perhaps more. 
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Unit 1: Different-Sized Infinities! 
Set Theory and Proof by Contradiction 

Teacher Notes 

Start the unit by having students read aloud Galileo’s discussion on infinity from the Dialogue on Two 
New Sciences (1638).  It is excerpted in Sherman Stein’s Mathematics: The Man-Made Universe (2nd 
edition, Freeman, 1962), pp. 314-315, and can be downloaded from my Web site  
 < http://www.picciotto.org/math-ed/infinity/galileo.html>.  
The ensuing discussion can help set up many of the key questions in this unit. 

Other readings (required): 

“Aleph-null and Aleph-one”, Martin Gardner, from Mathematical Carnival (Knopf, 1975) 

“Georg Cantor”, Joseph W. Dauben, in Scientific American, June 1983, pp. 122-131 

Also (optional): 

“The Book of Sand”, Jorge Luis Borges, from The Book of Sand (Dutton, 1977) 

“Hilbert’s Hotel”, Carol Lay, < http://www.buzzle.com/showImage.asp?image=272> 

Not included in the worksheets: discussion about paradoxes involving infinity. Some reading on this: 

 Aha! Gotcha, Martin Gardner, pp. 16-17,  143-144 

Prime Numbers: 

The purpose of this activity is two-fold: on the one hand, it introduces proof by contradiction, a central 
tool in mathematics and in the discussion of infinity; on the other hand, it addresses one question about 
infinity rigorously, in a context that is reasonably familiar to students. 

The argument here assumes that every natural number has a prime factor, which students readily accept. 
One way to explain that is that every number must have a smallest factor (greater than 1), which must be 
prime. If it were not so, it would have a factor (other than 1 and itself) that would have to be a factor of 
the original number, which would contradict our assumption that this was the smallest factor. 

The approach in this lesson is largely based Sherman Stein’s Mathematics: The Man-Made Universe, 
Chapter 4. 
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Zeno (ca. 490-430 BC?) 
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Solutions to Slumber Theory 

1.  Eight (1 | 2 | 3 | 4; 12 | 3 | 4; 1 | 23 | 4; 1 | 2 | 34; 12 | 34; 1 | 234; 123 | 4; 1234)  

2.  67 | 89 (12 is not slime since it is not prime, and the only possible slicing creates a sequence which 
includes 1, which is not prime. 345 is not slime, since each of the four possible slicings includes a 
non-prime: 3 | 4 | 5; 3 | 45; 34 | 5; 345)  

3.  2; 2 | 2; 3 | 2  

4.  5 x 5 = 2 | 5; 15 x 15 = 2 | 2 | 5  

5.  3 x 3 x 3 = 2 | 7; 7 x 7 x 7 = 3 | 43  

6. 2 and 3; 2 | 2 and 23; 31 and 3 | 2  

7.  31, 3 | 2, and 3 | 3; 71, 7 | 2, and 73  

8.  There are an infinite number of primes 

9. 23 or 2 | 3  

10.  223, 2 | 23, or 2 | 2 | 3  

11. 2, 3, 5, 7, 23, 37, 53, 73, 373. There are no others.  
Indeed, the only digits one can use are 2, 3, 5, and 7.  
2 can only occupy the first place, otherwise there would be a two-digit slice ending in 2, which 

would be even and therefore not prime. Similarly, 5 can only occupy the first place, otherwise 
there would be a two-digit slice ending in 5, which would be a multiple of 5, and not prime. A 
digit cannot be repeated in consecutive positions, since that would create a slice that would be a 
multiple of 11.  

If the first digit is 2, the next must be 3, since 27 is not prime. If the first two digits are 23, there can 
be no third digit, since 237 is a multiple of 3. Therefore, there are no other super-slimes starting 
with 2.  

A parallel argument shows that the super-slimes starting with 5 are only 5 and 53.  
Super-slimes starting with 3: there is none greater than 3, 37, and 373, since 3737 is a multiple of 37.  
Super-slimes starting with 7: there is none greater than 73, since 737 is a multiple of 11. 
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Georg Cantor 
1845-1918 
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Exercises and Problems for Assessment 

Explain your answers / Show your work 

1. Make a list of the subsets of the set {†, ◊, €} 

2. How many subsets does the set {1, 2, 3, 4, 5, 6, 7, 8} have? (Don’t make a list of them!) 

3.  Describe this set in words: {2n+1 | n ∈ NN } 

Notation: ∉ means “is not an element of” or “does not belong to”. 

4. Write in set notation: the set of irrational real numbers. 

5. Prove that the even integers constitute a countable infinity. 

6. Prove that the interval [0,1] is equivalent to the interval [2, 9]. 

7. Name a three-digit prime number. (Your calculator would give you the number back if you use F2 
Factor( ) Explain how you know the number really is prime. 

8. What is the sum of the first 100 elements of a geometric sequence whose first element is 0.9 and 
common ratio is .1? Give an exact answer. 

9. Bonus: Prove that the interval [0, 1] is equivalent to the interval (0, 1] 

1. Could you theoretically put an uncountable number of copies of these letters on a piece of paper? 
The letters are drawn in an ideally thin line, in any size, and cannot overlap. Explain. 
a. K 
b.  L 

2. Make a list of three important ideas that are due to Georg Cantor. For each one, use a few words to 
describe the sort of proof that he used to support it. (You do not need to write a full proof.) 

3. Write three facts about Cantor’s life. 

4. What do these words and symbols mean? 
a. the natural numbers 
b. the integers 
c. the rational numbers 
d. RR 
e. ℵ0 
f. C 
g. of the words and symbols a-f, which represent sets? which represents cardinal numbers? 
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5. Here is a list of positive rational numbers:  
1
1 , 

1
2 , 

2
1 , 

1
3 , 

2
2 , 

3
1 , 

1
4 , 

2
3 , 

3
2 , 

4
1 , 

1
5 , 

2
4 , 

3
3 , 

4
2 , 

5
1 , 

1
6 , 

2
5 , 

3
4 , 

4
3 , 

5
2 , 

6
1 , 

1
7 , … 

a. Explain how the list is organized. (Hints: look for patterns; this is not the list we studied in class.) 
b. Give the next seven rational numbers on the list, following the pattern. 
c. Use the first quadrant to display these fractions, connecting them in a way that shows how the 

list develops. 
d. Will this list eventually reach every positive rational number? Explain. 
e. Do some rational numbers appear more than once on the list? 
f. How would you change the list to use it in a proof that the set of positive rational numbers is 

countable? (Hint: look at your answer to e.) Show the changes on the part of the list that is shown 
above.  

6. Prove that [0, 1] is equivalent to (0, 1) 

7. Prove that (0, 1) is equivalent to (1, ∞) 

8. How does one prove that two sets are not equivalent? 

9. Choose an uncountable infinite set, and prove that it is indeed so. 

1. Explain the words “countable” and “uncountable”. 

2. Prove that the set of all prime numbers is  
a. infinite (it is not enough to say “it goes on forever” -- use a proof by contradiction) 
b. countable 

3. Prove that [0,1] is equivalent to R 

4. Explain how we know there are an infinite number of transfinite cardinal numbers. (Not just ℵ0 and 
C!) 

5. Compute and explain. (Use the rules of cardinal number arithmetic; do not just give vague 
arguments.) 
a. ℵ0 · C  = C    
b. ℵ0 + C = C   

6. a. Show (mathematically) that 1.2343434343434… is a rational number.  
b. Explain (mathematically) why 1.29999… = 1.3 

7. Briefly summarize paradoxes about infinity: 
a. one suggested by Zeno 
b. one discussed by Galileo 
c. one discovered by Bertrand Russell 

1. Explain the words  
a. cardinal number 
b. one-to-one matching 
c. countable 
d. uncountable  
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2. Prove that the set of all prime numbers is infinite (it is not enough to say “it goes on forever” -- use a 
proof by contradiction) 

3. Prove that (-1,1) is equivalent to R. 

4. Explain how we know there are an infinite number of transfinite cardinal numbers. (Not just ℵ0 and 
C!) You do not need to write a formal proof. 

5. Compute and explain. (Use the rules of cardinal number arithmetic and results we’ve already 
proved; do not just give vague arguments.) 
a. C · C  = C    
b. C + C = C   

6. a. Show (mathematically) that 90.1234234234234234234… is a rational number.  
b. Explain (mathematically) why 2.9999… = 3 

7. Summarize the story “The Book of Sand” in a short paragraph. 

8. Can one use Cantor’s diagonal proof to show that there are more than C subsets of R? Explain. 
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Unit 2: Chaos! 
Dynamical Systems 

Teacher Notes 

I usually start this unit by having students read the Prologue to James Gleick’s Chaos. 

Iterating Linear Functions 

There is a prerequisite unit to this lesson (and this whole unit,) also titled “Iterating Linear Functions”. It 
is linked to on the Infinity Web page on my site, and is suitable for students in Algebra 2. This lesson 
reviews that unit, and takes it one step further towards an explicit formula for the nth term.  

In addition to reviewing that foundational work, this worksheet provides a good context to discuss the 
different types of orbits (see the lesson: “Orbit Analysis”), and to introduce graphical iteration.  

One strategy to find the explicit formula for xn is to first prove that dn is a geometric sequence. Here is 
an algebraic argument: 

 

The argument is probably too subtle to be discovered by students, so after they conjecture that the 
sequence is geometric, the teacher should present and explain this. It is based on the answer to 3a (the 
formula for the fixed point). Students should then be able to get an explicit formula for dn and from 
there, one for xn. 

Graphical Iteration 

Students should first do graphical iteration (as described for example in Douglas Hofstadter’s 
Metamagical Themas, Chapter 16) by hand, to understand how it works. Later, it is necessary to use 
electronic support for this. I used a homemade program in the Boxer programming environment for this, 
but a more accessible tool is a Texas Instruments graphing calculator – most of them support graphical 
iteration in sequence mode, under the name “web plots”.  
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See also the GeoGebra applets I link to on the “Iterating Functions” page on my site, and the Fathom 
files on the Web site if you have access to the Fathom software. They provide a crucial electronic 
approach to this unit. (If you end up doing this using spreadsheets or some other technology, please send 
me your files, and I will post them on the site for others to use. Of course, I will acknowledge you.)  

Iterating the Logistic Equation 

In the same chapter, Hofstadter explains what happens when iterating the function f(x)=r·x·(1–x). 
(Actually he uses 4λ for r.) You will find a more accessible introduction to the same thing in Gleick’s 
Chaos, chapter 3. Both are required readings, though students need not read the whole of Hofstadter’s 
chapter: the crucial part is pp. 364-376. 

The worksheet addresses many key ideas that neither author emphasizes, but which are nevertheless 
important foundational ideas for this work.   

Note that f(f(x)) = -r3x4 + 2r3x3 – (r3+r2)x2 + r2x. (This formula can be used to experiment with a key idea 
raised in Hofstadter’s chapter.) 

Building a Bifurcation Graph 

The idea here is for students to build their own bifurcation graph, using Fathom. This reinforces the 
difficult ideas encountered in the reading.  

Orbit Analysis of a “Dome” Function 

Students apply what they learned so far in this unit to another “dome” function. This is an excellent way 
to assess their understanding. I use the subsequent sheet Assessment: Orbit Analysis of a “Dome” 
Function to give students feedback on how well they met my expectations. 

Iterating a Function of Complex Numbers 

It is of course necessary to learn or review complex number arithmetic before this worksheet. Then, as 
an introduction, start by figuring out the real and complex parts of the recursive formula, and finally 
have the students build this in Fathom – see the Fathom file complex-iter.ftm on the Web Site. 

It is interesting to use Fathom to explore and discuss what happens with different seeds for a given c, 
and it provides a necessary foundation for understanding Julia sets and the Mandelbrot set. (It is not too 
difficult to find Web sites where students can explore those but doing that without laying the necessary 
groundwork would not be nearly as meaningful.) 
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Assessment: Orbit Analysis of a “Dome” Function 

Find the maximum value of r that keeps your function inside the unit square for values of x between 0 
and 1. 

For what value of r do we get extinction? equilibrium? cyclical behavior? chaos? 
(for each of these behaviors give a description and examples) 

 

Where are the fixed points?  

How do they show up graphically?  

Do they attract or repel? 

 

What are the points of bifurcation?  

(What does that mean?)  

Explain this in terms of the graph of the function f(f(x), etc. 

 

Describe unusual features of your particular function. 

 

Try to find values of r that give orbits for which the period is not a power of 2 

 

Include a short introduction (or conclusion) based on the readings, about how this sort of analysis fits in 
the recent history of science. 

 

Use language correctly. 

 

Write clearly, and illustrate. 
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Exercises and Problems for Assessment 

4.  Explain this visual iteration of a linear function. What are the two lines? What is the significance of 
their intersection? What is the seed? What can you say about its orbit? 

 

8. Iterating y = 2x – 3.  
a. What is the fixed point? Is it attracting or repelling? 
b. Choose a seed. Find the differences (d1, d2, d3, …) between successive iterates and the fixed 

point. What sort of sequence do you get? (arithmetic? if so, what is the common difference? 
geometric? if so, what is the common ratio? neither?) 

c. Find an explicit formula for dn. 
d. Find an explicit formula for xn. 

9. Repeat #8 for y = mx + b. 

3. If you iterate the function f(x) = 2x-10, with seed x0=11, find an explicit formula for xn. Prove your 
answer. 

10. Do an orbit analysis for y = x2 – x. (What are the fixed points? What are the orbits for different 
seeds?) 

8. Do an orbit analysis for y = x2 + x. (What are the fixed points? Are they attracting or repelling? What 
are the orbits for different seeds?) 

9. How does the iteration of functions relate to population biology? Why is the iteration of a linear 
function not adequate for this kind of modeling?  

1. What are Julia sets? What is the Mandelbrot set? Explain their symmetries.  
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Unit 3: Stairway to Infinity! 
Proof by Mathematical Induction 

Teacher Notes 

The Strong Law of Small Numbers 

For much of their schooling, our students have been encouraged to look for numerical patterns, and to 
generalize them. While this is a sound pedagogical practice, as it helps develop number sense and lays a 
foundation for algebraic thinking, it does reinforce the very non-mathematical misconception that “if it 
seems true, it must be true”. This worksheet works well to challenge the misconception. 

Selected answers:  
5. breaks down for n=40 
6. breaks down for n=127 
7. breaks down for n=432 
8. breaks down for n=5777 

Introduction to Mathematical Induction 

In Algebra 2, my students become familiar with the concept of explicit vs. recursive formula for a 
sequence. I find that this provides a good foundation for introducing the idea of proof by mathematical 
induction, though of course it is not sufficient. 

Do not expect students to get through this worksheet in one sitting!  

In many, if not most, textbooks, when proof by mathematical induction is introduced, students are 
supplied with the conjectures that they are asked to prove. I find that they are much better motivated to 
write the proofs if they themselves come up with the conjecture. Of course, this is more difficult, and it 
requires providing much support to the students, including hints. See the visual hint for the sum of cubes 
on my Web site. I also encourage the students to use Fathom (or a spreadsheet program) to test their 
conjectures. (See the Fathom files on the Web site for examples.) 

The triangular numbers, of course, come up in a multiplicity of disguises: the “handshakes” problem, 
connecting n vertices with edges, arranging chips into three non-empty piles, number of line segments 
determined by n points on a line, and so on. 

Another version of pentagonal numbers: omit the central dot. 

A number-theoretic conjecture that can be proved by mathematical induction, but not following the 
explicit vs. recursive formula approach laid out on this worksheet: every power of 4 a multiple of 3, plus 
1. I usually do this a couple of days into this unit, to clarify that the essence of mathematical induction is 
not the algorithm presented on this sheet. (Though I have found that for most students, the approach on 
this sheet is an effective way to get started.) 
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Fibonacci Conjectures 

Prerequisite: I usually introduce Fibonacci numbers (which many students have already encountered) by 
asking how many ways there are to tile a 2 by n strip with dominoes. This is useful in previewing the 
domino-based proofs we look a little later. An equivalent problem is “How many ways are there to 
climb a staircase, if one can take either one or two steps each time?” 

The next step is to point out that any two numbers can serve as the seeds of a Fibonacci-style sequence, 
and ask students to make their own. Then I have them add two such sequences, and note that this creates 
yet another Fibonacci-style sequence. In particular, when a student hits upon the Lucas numbers (seeds: 
1, 3), I tell them that this is what that particular sequence is called. If no one comes up with it, it is 
usually sufficient to ask for the “simplest” Fibonacci-style sequence for someone to suggest it. 

Finally, I have students look for patterns in the Fibonacci and Lucas numbers, as a way to come up with 
conjectures. Some students find it helpful to use Fathom tables as an environment to generate and test 
their ideas. If students are stuck, I hand out this worksheet to help them get started. 

Of course, the purpose of the activity is to end up proving the conjectures. Assuming two consecutive 
steps for the formula, adding them, and doing a little algebra, sometimes leads to a proof by 
mathematical induction. On the other hand, some of the formulas are not so easy to prove, which 
provides motivation for finding an explicit formula for the Fibonacci and Lucas numbers. 
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Exercises and Problems for Assessment 

1. Find an explicit formula for the number of toothpicks needed to make a bridge with bottom length n. 
(See figure.) Use mathematical induction to prove it. 

 

2. Same problem about these triangles: 

 

1. Find an explicit formula for the nth House Number, and prove that it is correct by mathematical 
induction. Explain your recursive step based on the figure. 

1 5 12 22  

2. Use the recursive equation xn = 
1

1 + xn-1   and the seed x0 = 0 to find x1 to x9 as fractions. Notice a 
pattern, and prove it. 
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Unit 4: Fractals! 
Recursion 

Teacher Notes 

I do this unit in the Boxer computational environment, using its turtle graphics capabilities. Any full 
programming language with full access to turtle graphics, the ability to pass parameters to procedures, 
and support for recursion would presumably work just as well. In particular, this should be possible in 
most versions of Logo. (Alas, not all!) I understand that one can also do some of this work with 
Geometer’s Sketchpad. 

What is exciting about fractals, aside from the mathematics, is the fact that they provide a wide-open 
opportunity for student creativity, something that is often lacking in math classes.  

I have no worksheets on this: I teach it pretty much entirely at the board, and on the computer. I 
introduce three methods for drawing fractals via turtle graphics: “self-decorating” fractals, where 
smaller copies of the overall shape are embedded in the image; “replacement” fractals, such as the 
famous “snowflake”, where part of a design is replaced with a more complicated version of it; and “tree” 
fractals, where the figure branches into smaller versions of itself. Students do a final fractal project 
where they create fractals by using one or more of these techniques.  

Lewis Carroll’s “Two-Part Invention” (available on my Web site) is a logical —not visual— fractal, and 
it makes for interesting philosophical discussions. Martin Gardner cites it in “Infinite Regress”, a 
wonderful chapter in his Sixth Book of Mathematical Games from Scientific American. In it, he makes 
connections between fractals and other cultural manifestations of infinite regress: in art, theater, 
mathematics, etc. 

See the next page for a few end-of-unit exercises and problems. 
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Exercises and Problems for Assessment 

2. Level 0: start with a square (assume its side has length 1). Level 1: divide it into nine squares, and 
remove all but the four corners. Level 2: repeat the process with each of the remaining four squares. 
Continue the process, as illustrated below.  

Level 0 Level 1 Level 2 Level 3  
a. How many squares are there at level n? What is their total area? What is the sum of their 

perimeters? 
b. Repeat the process infinitely. How many squares are there? What is their total area? What is the 

sum of their perimeters?  
c. What is the dimension of this fractal? Explain how you get your answer, and then explain why 

the answer makes sense. 

5. Create one or more original fractal(s) in Boxer, all in the same file box. They can be “self-
decorating”, replacement, or tree fractals. The overall size of each fractal should not depend on the 
level. Include a menu that shows interesting inputs for me to execute.  
On paper: 
a. an explanation of the fractal 
b. some calculations, explained — for example: 

◊ the dimension of your fractal  
◊ its area and perimeter, if meaningful 
◊ the distance traveled by the turtle in drawing it 

 (these suggestions may not apply to your fractal) 
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