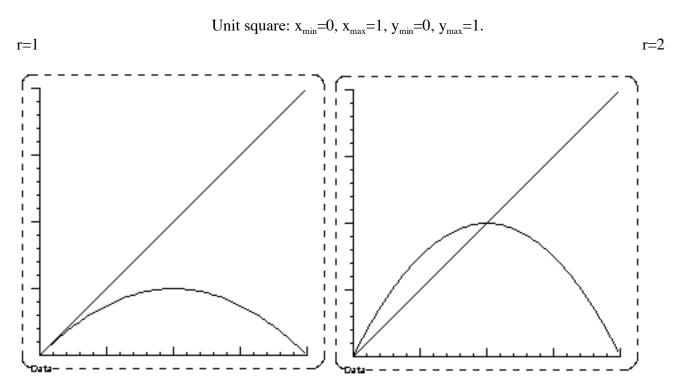
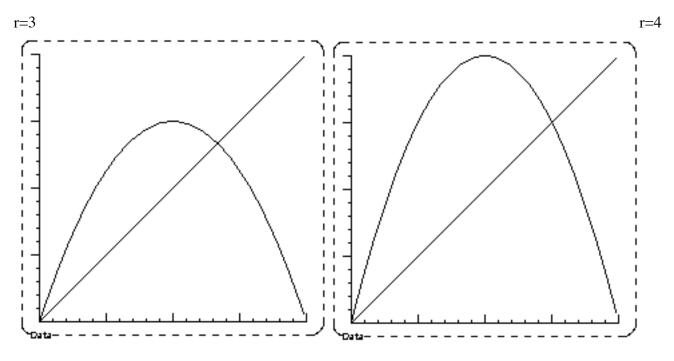
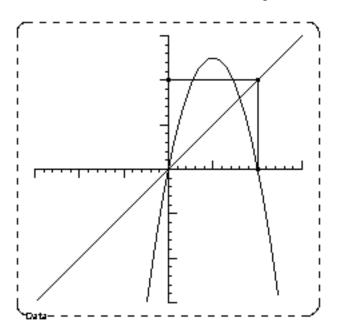
Iterating the Logistic Equation


y=rx(1-x) with r>0


Many properties of the iteration of the logistic equation can be investigated without technology.

- 1. Explain why a value of $x_n > 1$ leads to a negative value of x_{n+1} .
- 2. How many fixed points are there? Find a formula for each, as a function of r if necessary.
- 3. (For Calculus students) For what values of r is the entire curve under the y=x line in the domain [0,1]? (Hint: for what value of r is the curve tangent to the y=x line at the origin?)
- 4. Are your answers to the previous two questions consistent?
- 5. Where is the vertex? Find a formula for its coordinates as a function of r.
- 6. For what values of r is the vertex outside the unit square?
- 7. What are the implications for iterating the function in those cases?
- 8. Do an orbit analysis for the logistic equation. Consider only seeds in the interval [0,1]. See how much you can answer by studying the figures below, and then use technology. Consider the following cases:


a.	0 <r<1< th=""><th>b.</th><th>r=1</th><th>c.</th><th>1<r<2< th=""></r<2<></th></r<1<>	b.	r=1	c.	1 <r<2< th=""></r<2<>
d.	r=2	e.	2 <r<3< th=""><th>f.</th><th>r=3</th></r<3<>	f.	r=3
g.	3 <r<4< td=""><td>h.</td><td>r=4</td><td>i.</td><td>r>4</td></r<4<>	h.	r=4	i.	r>4

Graphs with Various Values of r

r=5 (this is zoomed out a bit, the unit square is marked)

