Doctor Dimension

Doctor Dimension is a flat scientist. He pours two-dimensional liquids into these two-dimensional containers:

1. For each container, find a function for the amount of liquid (measured as area, since he lives in a flat universe) as a function of the height of liquid (x). Note that the functions are piecewise: each one consists of one part for $0 \leq x<8$, and another for $8 \leq x \leq 16$.

To investigate the rate of change of these functions, you will need to set up your calculator as follows:

Program:

Press PRGM, choose NEW, and type the name RATE. Press ENTER.
Then, type:
:Prompt H
:Prompt X
:Disp "LEFT", (Y (X) - $\mathrm{Y}_{0}(\mathrm{X}-\mathrm{H})$) / H
To get "Prompt", press PRGM, then choose I/O. Likewise to get "Disp". Y_{0} is in VARS Y-VARS. To complete the program, add the next line, which should give you the rate of change to the right of x. To use the program, press PRGM, then choose RATE.

Function:

You can put the functions you want to study in any $\mathrm{Y}=$ place. To use the program on Y_{1}, for example, go down to " $\mathrm{Y}_{0}=$ ", and set it to " $\mathrm{Y}_{0}=\mathrm{Y}_{1}$ ".
2. For each function above, use the RATE program to find its slope when $x=4$, when $x=8$, and when $x=12$. Remember that to have a slope, the limits of the rates of change on the left and on the right must be equal.

The Return of Doctor Dimension

Doctor Dimension has a new two-dimensional container for his two-dimensional liquids:

He fills it starting in the middle, as shown in the figure.

1. Can you find a function for the amount of liquid (measured as area, since he lives in a flat universe) as a function of the height of liquid (x)?
2. Discuss what happens when $\mathrm{x}=8$.
