Scaling Tables

1. With your neighbors, choose a simple shape drawn on graph paper, with area greater than 1 . Scale it, and fill out the first two tables:

Scaling Factor	Perimeter
1	
2	
3	
4	
5	
x	

Scaling Factor	Area
1	
2	
3	
4	
5	
x	

Scaling Factor	Perimeter
1	
2	
3	
4	
5	
x	

Scaling Factor	Area
1	
2	
3	
4	
5	
x	

2. Repeat $\# 1$ with another shape of area greater than 1 . Use the next two tables.
3. With your neighbors, choose a simple solid made of cubes, with volume greater than 1 . Scale it, and fill out the first two tables:

Scaling Factor	Surface Area
1	
2	
3	
4	
5	
x	

Scaling Factor	Volume
1	
2	
3	
4	
5	
x	

Scaling Factor	Surface Area
1	
2	
3	
4	
5	
x	

Scaling Factor	Volume
1	
2	
3	
4	
5	
x	

4. Repeat \#3 with another solid of volume greater than 1 . Use the next two tables.
5. You should have eight formulas of the form $y=k x^{n}$. Enter them in a calculator or spreadsheet, and check that you have the correct values in your tables.
6. For each formula, what is k ? what is n ?
7. What value of n corresponds to perimeter? to area? to volume? Explain.

$\boldsymbol{n}^{\text {th }}$ Power Variation

The function $y=k x^{n}$ is called an $n^{\text {th }}$ power variation.

1. For an $n^{\text {th }}$ power variation, if $x=0$, then $y=$ \qquad . What does this tell you about the graphs of $n^{\text {th }}$ power variations?
2. Choose your own $n^{\text {th }}$ power variation equation, $y=$ \qquad , with both n and k different from your neighbors'. Fill out the table for your equation:

\boldsymbol{x}	\boldsymbol{y}
-3	
-2	
-1	
0	
1	
2	
3	
4	
6	
8	

3. Look for these patterns in your table. What happens to y when you multiply x by:
a. 2?
b. 3?
c. 4 ?

This is called the multiply-multiply pattern:
For an $n^{\text {th }}$ power variation, when x is multiplied by c, y is \qquad
4. Find n and k for these $n^{\text {th }}$ power variations. Sketch the graphs.

x	y
2	36
4	144
6	324
8	576

x	y
2	24
4	192
6	648
8	1536

\boldsymbol{x}	\boldsymbol{y}
2	10.2
4	20.4
6	30.6
8	40.8

\boldsymbol{x}	\boldsymbol{y}
2	31.6
4	126.4
6	284.4
8	505.6

Recognizing $\boldsymbol{n}^{\text {th }}$ Power Variation

Consider the $n^{\text {th }}$ power variation $y=5 x^{2}$. If you multiply x by 3 , (replace x by $3 x$,) what happens to y ?

$$
y=5(3 x)^{2}=5 \cdot 9 x^{2}=9 \cdot 5 x^{2}
$$

So the new y is 9 times the original y.

1. If you multiply x by c, what happens to y if $y=5 x^{2}$?
2. If you multiply x by c, what happens to y if $y=k x^{n}$?

This is called the multiply-multiply pattern. It only works consistently for $n^{\text {th }}$ power variations.
3. Which of these is an $n^{\text {th }}$ power variation? Try the multiply-multiply pattern. If it works consistently then it's an $n^{\text {th }}$ power variation:
a.

x	y
2	-2
4	3
6	8
8	13

b.

\boldsymbol{x}	\boldsymbol{y}
2	12
4	48
6	108
8	192

c.

\boldsymbol{x}	\boldsymbol{y}
2	12
4	48
6	192
8	768

d. | \boldsymbol{x} | \boldsymbol{y} |
| :---: | :---: |
| 2 | 2 |
| 4 | 16 |
| 6 | 54 |
| 8 | 128 |

4. Find the equations for each of the tables above. For the ones that are not $n^{\text {th }}$ power variations, what are they?

STOP! Let's talk about roots and fractional exponents.
5. Find the equations for each of the tables below. They are $n^{\text {th }}$ power variations (and thus have a multiply-multiply pattern), but n is not a whole number! (Some numbers are approximations.)
a.

x	y
1	1
4	2
9	3
16	4

b.

x	y
1	2
2	2.828
3	3.464
4	4

c.

x	y
1	1
3	1.442
9	2.080
27	3

\boldsymbol{x}	\boldsymbol{y}
1	5
4	7.937
8	10
9	10.400

6. Sketch the graphs.

A New Meaning for Exponents

Surface Area of a Cube

1. If the surface area of a cube is 6 , then its side length is 1 . Complete the table by finding the side length of cubes with the given surface areas.

Surface Area	Side Length
6	1
24	
54	
60	

2. This is a multiply-multiply table. Explain.
3. Find the formula for the table. What is the value of k and what is the value of n ?

A Fractional Exponent

4. Find x.
a. $2^{5} \cdot 2^{5}=2^{x}$
b. $2^{3} \cdot 2^{3}=x^{6}$
c. $\left(2^{4}\right)^{2}=2^{x}$
5. Find x.
a. $9^{x} \cdot 9^{3}=9^{6}$
b. $9^{x} \cdot 9^{x}=9^{2}$
c. $9^{x} \cdot 9^{x}=9^{1}$
d. $B^{x} \cdot B^{x}=B^{l}$
6. Find x.
a. $\left(9^{x}\right)^{2}=9^{6}$
b. $\left(9^{x}\right)^{2}=9^{1}$
c. $\left(B^{x}\right)^{2}=B^{6}$
d. $\left(B^{x}\right)^{2}=B^{1}$
7. The previous problems suggest a meaning for the exponent $1 / 2$. Explain.
8. Using this meaning of the exponent $1 / 2$, find (without a calculator, as much as possible):
a. $16^{1 / 2}$
b. $400^{1 / 2}$
c. $25^{1 / 2}$
d. $2^{1 / 2}$
9. Does it make sense to use the exponent $1 / 2$ in the equation you found in Problems 3? Explain.

Laws of Exponents and Radical Rules

Rules for operations with radicals can be derived from laws of exponents using the fact that

$$
x^{1 / 2}=\sqrt{x}
$$

The following rules assume a and b are non-negative.
Exponent Rule
Radical Rule

$$
\begin{gathered}
a^{1 / 2} \cdot a^{1 / 2}=a^{1} \\
a^{1 / 2} \cdot b^{1 / 2}=(a b)^{1 / 2} \\
\frac{a^{1}}{a^{1 / 2}}=a^{1 / 2} \\
\frac{a^{1 / 2}}{b^{1 / 2}}=\left(\frac{a}{b}\right)^{1 / 2}
\end{gathered}
$$

$$
\sqrt{a} \cdot \sqrt{a}=a
$$

$$
\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}
$$

$$
\frac{a}{\sqrt{a}}=\sqrt{a}
$$

$$
\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}
$$

10. Check all the radical rules by using $\mathrm{a}=16$ and $\mathrm{b}=9$.

Find the Formula

All the formulas on this sheet are linear, $n^{\text {th }}$ power variations, square or cube roots. You can recognize them by looking for patterns in the tables.

1. Name the pattern, name the function, and write the general formula:
a. When you add d to x, you add $m d$ to y
b. When you multiply x by c, you multiply y by c^{n}
c. When you multiply x by c, you multiply y by \sqrt{c}
d. When you multiply x by c, you multiply y by $\sqrt[3]{c}$
2. If a car is going faster, it takes a longer distance to brake to a stop. The following measurements were collected for a certain car:

Speed (mph)	Braking Distance (ft)
10	5
20	20
30	45
40	80

a. Find a formula for the braking distance as a function of speed.
b. Assuming the same formula holds at greater speeds, figure out the braking distance for 65 mph .
3. A crate weighs more when you put watermelons in it. The following is the approximate weight of the crate depending on the number of watermelons.

\# of Watermelons	Weight (lbs)
4	108
6	132
10	180
12	204

a. Find a formula for the weight of the crate as a function of the number of watermelons.
b. What is the weight of the empty crate?
c. What is the average weight of a watermelon?
4. When the wind blows faster, windmills generate more power. The following approximate measurements were collected for a certain windmill:

Wind Speed (mph)	Power (watts)
3	3.24
6	25.92
9	87.48
12	207.36

a. Find a formula for the power as a function of wind speed.
b. Find the power generated by a $10-\mathrm{mph}$ wind.
5. The longer a pendulum is, the longer its period. Here are some approximate measurements:

Length (cm)	Period (s)
10	.63
20	.90
40	1.27
80	1.79

a. Find a formula for the period as a function of the length.
b. How long is the period for a 30 cm pendulum?

$\boldsymbol{n}^{\text {th }}$ Power Variation Graphs and Tables

$$
y=k x^{n}
$$

1. What can you say about the x - and y-intercepts of $n^{\text {th }}$ power variation graphs?
2. For an $n^{\text {th }}$ power function, when $y=k, x=$ \qquad . Explain why this works algebraically.
3. Find values of n and k that yield graphs with the following four basic shapes:

a.
b.

d.

4. Explain the multiply-multiply property of $n^{\text {th }}$ power variation equations
a. Using $y=4 x^{2}$ as your example.
b. With an algebraic explanation.
5. Find n and k for these $n^{\text {th }}$ power variations.
a.

\boldsymbol{x}	\boldsymbol{y}
-4	-480
-2	-60
-1	-7.5
0	0
2	60
4	480
8	3840

b.

\boldsymbol{x}	\boldsymbol{y}
-8	2730.7
-4	170.67
-2	10.667
0	0
4	170.67
8	2730.7
16	43690

c.

\boldsymbol{x}	\boldsymbol{y}
-4	-128
-2	-32
-1	-8
0	0
2	-32
4	-128
8	-512

Inverse $\mathbf{n}^{\text {th }}$ Power Variation

An inverse $n^{\text {th }}$ power variation has an equation of this type: $y=k / x^{n}$

1. Among the following tables, look for the following patterns: add-add (linear function), multiplymultiply ($n^{\text {th }}$ power variation), and multiply-divide (inverse $n^{\text {th }}$ power variation).
a.

\boldsymbol{x}	\boldsymbol{y}
2	0.8
4	3.2
6	7.2
8	12.8

b.

x	y
2	1.2
4	7.4
6	13.6
8	19.8

c. | \boldsymbol{x} | \boldsymbol{y} |
| :---: | :---: |
| 2 | 7.071 |
| 4 | 10 |
| 6 | 12.247 |
| 8 | 14.142 |

d.

x	y
2	1.5
4	.75
6	.5
8	.375

2. Find a formula for each function.
3. Make tables for these functions:
a. $y=60 / x^{2} \quad$ b. $y=8 / x^{3}$

\boldsymbol{x}	\boldsymbol{y}

4. Describe the multiply-divide pattern in tables $1 \mathrm{~d}, 3 \mathrm{a}, 3 \mathrm{~b}$.
5. Graph these three functions and sketch the graphs.
6. These three tables have a multiply-multiply pattern, but n is not a positive number!
a. Find n for each one.
b. How is n related to the equation of the function?
7. The further you are from the center of the earth, the less you weigh. The following is the weight of a certain astronaut at various distances from the center of the earth. The earth's radius is approximately 4000 miles.

Distance (miles)	Weight (lbs)
5000	96
7500	42.67
10,000	24
15,000	10.67

a. Find a formula for the astronaut's weight as a function of the distance from the center of the earth.
b. How much does this astronaut weigh on earth?

