Scaling Tables

1. With your neighbors, choose a simple shape drawn on graph paper, with area greater than 1. Scale it, and fill out the first two tables:

Scaling Factor	Perimeter	Scaling Factor	Area
1		1	
2		2	
3		3	
4		4	
5		5	
x		x	

ı	Scaling Factor	Perimeter	Scaling Factor	Area
	1		1	
	2		2	
	3		3	
	4		4	
	5		5	
	x		x	

- 2. Repeat #1 with another shape of area greater than 1. Use the next two tables.
- 3. With your neighbors, choose a simple solid made of cubes, with volume greater than 1. Scale it, and fill out the first two tables:

Scaling Factor	Surface Area	Scaling Factor	Volume	Scaling Factor	Surface Area	Scaling Factor	Volume
1		1		1		1	
2		2		2		2	
3		3		3		3	
4		4		4		4	
5		5		5		5	
x		x		x		x	

- 4. Repeat #3 with another solid of volume greater than 1. Use the next two tables.
- 5. You should have eight formulas of the form $y = kx^n$. Enter them in a calculator or spreadsheet, and check that you have the correct values in your tables.
- 6. For each formula, what is *k*? what is *n*?
- 7. What value of *n* corresponds to perimeter? to area? to volume? Explain.

nth Power Variation

The function $y = kx^n$ is called an n^{th} power variation.

- 1. For an n^{th} power variation, if x = 0, then $y = _$. What does this tell you about the graphs of n^{th} power variations?
- 2. Choose your own n^{th} power variation equation, y =_____, with both *n* and *k* different from your neighbors'. Fill out the table for your equation:

x	у
-3	
-2	
-1	
0	
1	
2	
3	
4	
6	
8	

3. Look for these patterns in your table. What happens to y when you multiply x by:
a. 2?
b. 3?
c. 4?
This is called the *multiply-multiply* pattern:

For an n^{th} power variation, when x is multiplied by c, y is

4. Find *n* and *k* for these n^{th} power variations. Sketch the graphs.

		1			1			1		
x	У		x	У		x	у		x	у
2	36		2	24		2	10.2		2	31.6
4	144		4	192		4	20.4		4	126.4
6	324		6	648		6	30.6		6	284.4
8	576		8	1536		8	40.8		8	505.6

Recognizing *n*th Power Variation

Consider the *n*th power variation $y = 5x^2$. If you multiply *x* by 3, (replace *x* by 3*x*,) what happens to *y*? $y = 5(3x)^2 = 5 \cdot 9x^2 = 9 \cdot 5x^2$

So the new y is 9 times the original y.

- 1. If you multiply *x* by *c*, what happens to *y* if $y = 5x^2$?
- 2. If you multiply x by c, what happens to y if $y = kx^n$?

This is called the *multiply-multiply* pattern. It only works *consistently* for *n*th power variations.

3. Which of these is an n^{th} power variation? Try the *multiply-multiply* pattern. If it works *consistently* then it's an n^{th} power variation:

a.	x	у	b.	x	у	c.	x	у	d.	x	у
	2	-2		2	12		2	12		2	2
	4	3		4	48		4	48		4	16
	6	8		6	108		6	192		6	54
	8	13		8	192		8	768		8	128

4. Find the equations for each of the tables above. For the ones that are not n^{th} power variations, what are they?

STOP! Let's talk about roots and fractional exponents.

5. Find the equations for each of the tables below. They are n^{th} power variations (and thus have a *multiply-multiply* pattern), but *n* is not a whole number! (Some numbers are approximations.)

a.	x	у	b.	x	у	c.	x	у	d.	x	у
	1	1		1	2		1	1		1	5
	4	2		2	2.828		3	1.442		4	7.937
	9	3		3	3.464		9	2.080		8	10
	16	4		4	4		27	3		9	10.400

6. Sketch the graphs.

A New Meaning for Exponents

Surface Area of a Cube

1. If the surface area of a cube is 6, then its side length is 1. Complete the table by finding the side length of cubes with the given surface areas.

Surface Area	Side Length
6	1
24	
54	
60	

- 2. This is a *multiply-multiply* table. Explain.
- 3. Find the formula for the table. What is the value of k and what is the value of n?

A Fractional Exponent

- 4. Find *x*.
 - a. $2^5 \cdot 2^5 = 2^x$ b. $2^3 \cdot 2^3 = x^6$
 - c. $(2^4)^2 = 2^x$
- 5. Find *x*.
 - a. $9^x \cdot 9^3 = 9^6$ b. $9^x \cdot 9^x = 9^2$
 - c. $9^x \cdot 9^x = 9^1$
 - d. $B^x \cdot B^x = B^1$
- 6. Find *x*.

a. $(9^x)^2 = 9^6$ b. $(9^x)^2 = 9^1$ c. $(B^x)^2 = B^6$ d. $(B^x)^2 = B^1$

- 7. The previous problems suggest a meaning for the exponent $\frac{1}{2}$. Explain.
- 8. Using this meaning of the exponent $\frac{1}{2}$, find (without a calculator, as much as possible):
 - a. $16^{1/2}$ b. $400^{1/2}$ c. $25^{1/2}$ d. $2^{1/2}$
- 9. Does it make sense to use the exponent $\frac{1}{2}$ in the equation you found in Problems 3? Explain.

Laws of Exponents and Radical Rules

Rules for operations with radicals can be derived from laws of exponents using the fact that $x^{1/2} = \sqrt{x}$

The following rules assume *a* and *b* are non-negative.

Exponent Rule	Radical Rule
$a^{1/2} \cdot a^{1/2} = a^1$	$\sqrt{a} \cdot \sqrt{a} = a$
$a^{1/2} \cdot b^{1/2} = (ab)^{1/2}$	$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$
$\frac{a^1}{a^{1/2}} = a^{1/2}$	$\frac{a}{\sqrt{a}} = \sqrt{a}$
$\frac{a^{1/2}}{b^{1/2}} = \left(\frac{a}{b}\right)^{1/2}$	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$

10. Check all the radical rules by using a = 16 and b = 9.

Find the Formula

All the formulas on this sheet are linear, n^{th} power variations, square or cube roots. You can recognize them by looking for patterns in the tables.

- 1. Name the pattern, name the function, and write the general formula:
 - a. When you add d to x, you add md to y
 - b. When you multiply x by c, you multiply y by c^n
 - c. When you multiply *x* by *c*, you multiply *y* by \sqrt{c}
 - d. When you multiply *x* by *c*, you multiply *y* by $\sqrt[3]{c}$
- 2. If a car is going faster, it takes a longer distance to brake to a stop. The following measurements were collected for a certain car:

Speed (mph)	Braking Distance (ft)
10	5
20	20
30	45
40	80

- a. Find a formula for the braking distance as a function of speed.
- b. Assuming the same formula holds at greater speeds, figure out the braking distance for 65 mph.
- 3. A crate weighs more when you put watermelons in it. The following is the approximate weight of the crate depending on the number of watermelons.

# of Watermelons	Weight (lbs)
4	108
6	132
10	180
12	204

- a. Find a formula for the weight of the crate as a function of the number of watermelons.
- b. What is the weight of the empty crate?
- c. What is the average weight of a watermelon?

MathEducation.page

4. When the wind blows faster, windmills generate more power. The following approximate measurements were collected for a certain windmill:

Wind Speed (mph)	Power (watts)
3	3.24
6	25.92
9	87.48
12	207.36

- a. Find a formula for the power as a function of wind speed.
- b. Find the power generated by a 10-mph wind.
- 5. The longer a pendulum is, the longer its period. Here are some approximate measurements:

Length (cm)	Period (s)
10	.63
20	.90
40	1.27
80	1.79

- a. Find a formula for the period as a function of the length.
- b. How long is the period for a 30 cm pendulum?

MathEducation.page

*n*th Power Variation Graphs and Tables

$$y = kx^n$$

- 1. What can you say about the x- and y-intercepts of n^{th} power variation graphs?
- 2. For an n^{th} power function, when y = k, x =. Explain why this works algebraically.
- 3. Find values of *n* and *k* that yield graphs with the following four basic shapes:

- 4. Explain the *multiply-multiply* property of n^{th} power variation equations
 - a. Using $y = 4x^2$ as your example.
 - b. With an algebraic explanation.

х

-4

-2

-1

0

2

4

8

5. Find *n* and *k* for these n^{th} power variations.

a.

у	b.	x	У
-480		-8	2730.7
-60		-4	170.67
-7.5		-2	10.667
0		0	0
60		4	170.67
480		8	2730.7
3840		16	43690

c.

x	у	
-4	-128	
-2	-32	
-1	-8	
0	0	
2	-32	
4	-128	
8	-512	

y

1.5

.75

.5

.375

Inverse nth Power Variation

An *inverse* n^{th} *power variation* has an equation of this type: $y = k / x^n$

1. Among the following tables, look for the following patterns: add-add (linear function), multiplymultiply (n^{th} power variation), and multiply-divide (inverse n^{th} power variation).

a.	x	у	b.	
	2	0.8		
	4	3.2		
	6	7.2		
	8	12.8		

b.	x	у	c.
	2	1.2	
	4	7.4	
	6	13.6	
	8	19.8	

x	у	d.	x
2	7.071		2
4	10		4
6	12.247		6
8	14.142		8

- 2. Find a formula for each function.
- 3. Make tables for these functions:

- 4. Describe the *multiply-divide* pattern in tables 1d, 3a, 3b.
- 5. Graph these three functions and sketch the graphs.
- 6. These three tables have a *multiply-multiply* pattern, but *n* is not a positive number!a. Find *n* for each one.
 - b. How is *n* related to the equation of the function?

MathEducation.page

7. The further you are from the center of the earth, the less you weigh. The following is the weight of a certain astronaut at various distances from the center of the earth. The earth's radius is approximately 4000 miles.

Distance (miles)	Weight (lbs)
5000	96
7500	42.67
10,000	24
15,000	10.67

- a. Find a formula for the astronaut's weight as a function of the distance from the center of the earth.
- b. How much does this astronaut weigh on earth?