Negative Exponents - Teacher Notes

This is the $8^{\text {th }}$ grade version of the part of the Algebra 1 packet on Powers. It is based on Algebra: Themes, Tools, Concepts, lessons 8.11-8.12. It follows the $8^{\text {th }}$ grade Powers packet, and the Scientific
Notation packet. All these packets are available on www.MathEducationPage.org/middle-school/

Lesson 1: Negative Exponents

The meaning of negative exponents is derived from patterns, and from the product of powers law.

Lesson 2: Reciprocals and Opposites

Negative bases and parentheses are the source of many mistakes in algebra. A discussion of \#3 and \#4 might help throw some light on that subject.

Lesson 3: Ratio of Powers

Here the ratio of powers is reviewed, and applied in cases where simplifying ratios yields negative exponents.

Lesson 4: More on Exponential Growth

This lesson is based on Lessons 1 and 2 from the $8^{\text {th }}$ grade Powers packet. Here, we apply negative exponents to make estimates of past values.

Lesson 5: Negative Exponents of 10

This lesson applies the idea of negative exponents to powers of 10 , and thus to scientific notation. While the unit tries to give a solid conceptual foundation for this, it is important to give the students some practice.

Doing \#9 is preferable to applying the ideas to teacher-supplied examples. See the teacher notes for a similar assignment in the Scientific Notation packet.

Lesson 1: Negative Exponents

In previous lessons, we have considered only positive whole number exponents. Does a negative exponent have any meaning? To answer this, consider these patterns:

$$
\begin{array}{ll}
3^{4}=81 & (1 / 3)^{4}=1 / 81 \\
3^{3}=27 & (1 / 3)^{3}=1 / 27 \\
3^{2}=9 & (1 / 3)^{2}=1 / 9 \\
3^{1}=3 & (1 / 3)^{1}=1 / 3 \\
3^{0}=? & (1 / 3)^{0}=? \\
3^{-1}=? & (1 / 3)^{-1}=?
\end{array}
$$

1. a. Look at the powers of 3 . How is each expression related to the expression above it? Explain.
b. Following this pattern, what should the value of 3^{-1} be?
c. Now look for a pattern in the powers of $1 / 3$. As the exponent increases, does the value of the expression increase or decrease?
d. Following this pattern, what should the value of $(1 / 3)^{-1}$ be?
e. Compare the values of $3^{-1}, 3^{1},(1 / 3)^{1}$ and $(1 / 3)^{-1}$. How are they related?
f. Use the pattern you found to extend the table down to 3^{-4} and $(1 / 3)^{-4}$.

Another way to figure out the meaning of negative exponents is to use the product of powers law:

$$
x^{p} \cdot x^{q}=x^{p+q}
$$

For example, to figure out the meaning of 3^{-1}, note that:

$$
\begin{aligned}
3^{-1} \cdot 3^{2} & =3^{1} \\
3^{-1} \cdot 9 & =3
\end{aligned}
$$

So 3^{-1} must equal $1 / 3$.
2. Confirm the value of 3^{-1} by applying the product of powers law to $3^{1} \cdot 3^{-1}$.
3. Use the same logic to find the value of
a. 3-2
b. 3^{-x}
4. Are the answers you found in problem 3 consistent with the pattern you found in Problem 1? Explain.

Lesson 2: Reciprocals and Opposites

Reciprocals

1. Many people think that 5^{-2} equals a negative number, such as -25 .
a. Write a convincing argument using the product of powers law to explain why this is not true.
b. Show how to find the value of 5^{-2} using a pattern like the one in problem 1 .

The product of reciprocals is always 1 . For example, $1 / 3 \cdot 3=1$.
2. a. What is the reciprocal of 9^{3} ?
b. What is the reciprocal of 9^{-8} ?
c. What is the reciprocal of a^{b} ?

Opposites

The expression $(-5)^{3}$ has a negative base. This expression means raise -5 to the third power.
The expression -5^{3} has a positive base. This expression means raise 5 to the third power and take the opposite of the result.
3. Which of these expressions have negative values? Show the calculations or explain the reasoning leading to your conclusions.

-5^{3}	$(-5)^{3}$	-5^{2}	$(-7)^{15}$	$(-7)^{14}$
-5^{-3}	$(-5)^{-3}$	-5^{-2}	$(-7)^{-15}$	$(-7)-14$

4. a. Is $(-5)^{n}$ always, sometimes, or never the opposite of 5^{n} ? Explain, using examples.
b. Is -5^{n} always, sometimes, or never the opposite of 5^{n} ? Explain, using examples.

Lesson 3: Ratio of Powers

Negative exponents often arise when simplifying ratios of monomials.
This law of exponents is sometimes called the ratio of powers law:

$$
\frac{x^{a}}{x^{b}}=x^{a-b}, \text { as long as } x \text { is not } 0
$$

However, notice that it works only when the bases are the same.

Examples

$$
\begin{aligned}
& \frac{x^{6}}{x^{7}}=x^{6-7}=x^{-1} \text { or } \frac{1}{x^{1}} \\
& \frac{x^{3 a}}{x^{5 a}}=x^{3 a-5 a}=x^{-2 a} \text { or } \frac{1}{x^{2 a}}
\end{aligned}
$$

1. Simplify:
a. $4 x^{6} / 5 x^{7}$
b. $2 x^{8} y^{3} / 2 x y$
c. y^{3} / y^{7}
d. $45 a / 9 a^{5}$
2. Simplify:
a. $\frac{400 a^{5}}{25 a^{2}}$
b. $\frac{400 x^{3}}{200 x^{8}}$
c. $\frac{3 m^{6}}{9 m^{3}}$
d. $\frac{9 R^{a}}{3 R^{a}}$

Lesson 4: More on Exponential Growth

A bacterial culture doubles every hour. At this moment it weighs 16 grams.

1. What will it weigh
a. in one hour?
b. in 2 hours?
c. in 9 hours?
2. Explain how to calculate what the bacterial culture will weigh in x hours. Hint: A good way to explain this is to use powers of 2 . Check that your idea works for the questions in \#1.
3. What did the bacterial culture weigh
a. 1 hour ago?
b. 2 hours ago?
c. 4 hours ago?
4. Explain how to calculate what the bacterial culture weighed x hours ago.
5. Explain how to answer question \#4 by using multiplication. Hint: Use powers of $1 / 2$.
6. Explain how to answer question \#4 by using multiplication and powers of 2. Hint: Use negative exponents.

Lesson 5: Negative Powers of 10

1. Fill out this table:

$$
\begin{array}{ll}
10^{4}=10,000 & (1 / 10)^{4}=1 / 10,000=0.0001 \\
10^{3}= & (1 / 10)^{3}= \\
10^{2}= & (1 / 10)^{2}= \\
10^{1}= & (1 / 10)^{1}= \\
10^{0}= & (1 / 10)^{0}= \\
10^{-1}= & (1 / 10)^{-1}=
\end{array}
$$

2. Explain how to find 10^{n} without a calculator
a. if n is positive
b. if n is 0
c. if n is negative
3. Using a power of ten, write the reciprocal of each number.
a. 10^{2}
b. 10^{-4}
c. 0.001
d. 100
4. Write 4321000 in scientific notation. (Remember that scientific notation requires multiplying a number between 1 and 10 by a power of 10.)
5. Write 0.065 in scientific notation. Hint: this requires negative exponents!
6. Write these numbers without exponents:
a. $7.8 \cdot 10^{6}$
b. $7.8 \cdot 10^{-6}$
7. Write these numbers in scientific notation:
a. 9012
b. 0.0123

8. Summary:

a. Explain how to convert very large numbers into scientific notation.
b. Explain how to convert very small numbers into scientific notation.
c. Explain how to convert a number from scientific notation to a simple decimal number.
9. Research. Find four very small numbers that measure some real quantity. They should all be smaller than $1 / 1000$. The Web, encyclopedias, almanacs, and science books are good sources of such numbers.
a. Tell what each number measures.
b. Write each number in scientific notation.

