Parabola Similarity

In this activity, we will use GeoGebra in Algebra mode to explore parabola similarity.

Basics

First, let us make sure we have some needed GeoGebra basics.

1. Graph a parabola by typing in the Input Bar at the bottom of the screen:
$f(x)=x^{\wedge} 2+2 x+3 \quad$ (or use your own parameters, or even sliders for $\left.a, b, c\right)$
Find the vertex, using only geometric tools.
2. Graph another parabola. Find the vertex using the Min command if it is a "smile" parabola. (If it is a "frown" parabola, use the Max command, which works the same way.)

V=Min[<Function>, <Start x-Value>, <End x-Value>]
Replace the place holders including the $<$ and $>$, as indicated.
3. In a new window, show the grid. Make a vector with endpoints at lattice points (where grid lines intersect.) Translate a parabola, using this vector.
4. Make a new point. Dilate a parabola using this point as center. Choose your scale factor so that the image shows up well in the window.

All Parabolas Are Similar

5. In a new window, graph two parabolas whose equations have different a coefficients. Use zero, one, or two isometries followed by a dilation to show that the two parabolas are similar.
6. Challenge: How is the scaling factor related to the equations of the two original parabolas?
7. Challenge: Find a dilation that will take your first parabola to your second parabola without a need for any isometries.

The Scaling Factor

8. Graph $y=x^{2}$ in a new window. Make a point at the origin; call it O . One way to do this is to type $\mathrm{O}=(0,0)$ in the Input Bar. Make a slider; call it s.
9. Make a point A on the graph. Dilate A with center O and scaling factor s. The resulting point is A^{\prime}.
10. Explain the following statements:
a. If the coordinates of A are $\left(x_{A}, y_{A}\right)$, we have $y_{A}=x_{A}{ }^{2}$.
b. If the coordinates of A^{\prime} are (x, y), we have $x=s x_{A}$ and $y=s y_{A}$.
11. Use these facts and some algebra to write y as a function of x and s .
12. Graph the function. Verify that as you move A on the original graph, A^{\prime} moves on the new graph.
13. Conclusion: The graph of $y=a x^{2}$ is a dilation of the graph of $y=x^{2}$. Where is the center of dilation? What is the scaling factor?

For more information about the geometry of the parabola, including parabola similarity, see:
http://www.mathedpage.org/parabolas/geometry/

