\qquad

A Graphical Approach to the Quadratic Formula

This is an approach to the quadratic formula based on moving parabolas.

The solutions to $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are the $\mathrm{x}-$ intercepts of $y=a x^{2}+b x+c$. The x-intercepts are equidistant from the axis of symmetry, at a distance we'll call d. We'll say that the coordinates of the vertex are (h,v). Thus, the intercepts are $\mathrm{h} \pm \mathrm{d}$.

0 . Label this figure, using (h, v) for a certain point, and d for a certain line segment.

Review

1. What is h in terms of a, b, and/or c ?
2. Use the answer to \#1 to find v in terms of a , b, and/or c.
3. Discuss how the existence of the $x-$ intercepts depends on the signs of v and a. (Four cases: both positive / $\mathrm{a}>0, \mathrm{v}<0 / \mathrm{a}<0$, $v>0 /$ both negative)
4. Use this to find one expression in terms of a, b, and c whose sign predicts the existence of the x -intercepts.

Derivation

If we find the value of d in terms of a, b, and c, we have essentially found a formula for the solutions of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

Translate the two segments and the parabola together, so that the vertex is at the origin:

5. What is the equation for this parabola? Explain.
6. What are the coordinates of P in terms of d and v ? Label P with its coordinates.
7. Write a formula for P's y-coordinate in terms of its x -coordinate.
8. Solve for d. (In other words, write a formula for d in terms of v, and then in terms of a, b, and c.)
9. Use this to derive the quadratic formula.

Notes and Answers

Prerequisite: this is best done following the lessons Factored Form of Quadratic Equations, From Factored to Standard Form, and Moving Parabolas Around. It is intended as a lesson for teachers, though it may in the end be more accessible to students than the usual proof of the quadratic formula by completing the square.

1. $\mathrm{h}=-\mathrm{b} / 2 \mathrm{a}$
2. This is a tricky calculation. Many students are likely to need help. The result: $\mathrm{v}=\frac{-\mathrm{b}^{2}+4 \mathrm{ac}}{4 \mathrm{a}}$.

3 and 4. This is a way to discover or re-discover the discriminant. Basically, a and v must have opposite signs if we want to have x -intercepts. If a is positive, the parabola is a smile, and v needs to be non-positive for there to be solutions. So $b^{2}-4 a c$ needs to be positive or zero. If on the other hand a is negative, the parabola is a frown, and v needs to be non-negative for there to be solutions. Again, $\mathrm{b}^{2}-4 \mathrm{ac}$ needs to be positive or zero for there to be solutions. In short, there are solutions if and only if $\mathrm{b}^{2}-4 \mathrm{ac}$ is non-negative. (This argument is not likely to be discovered by students. Help them out.)
5. The formula is simply $y=a x^{2}$, since translating a parabola does not change a, and the vertex is at the origin.
6. $(\mathrm{d},-\mathrm{v})$
7. Thus, $-\mathrm{v}=\mathrm{ad}^{2}$
8. $\mathrm{d}= \pm \sqrt{\frac{-\mathrm{v}}{\mathrm{a}}}= \pm \frac{\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ after writing v in terms of $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
9. The intercepts are $\mathrm{h} \pm \mathrm{d}=\frac{-\mathrm{b}}{2 \mathrm{a}} \pm \frac{\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$, the quadratic formula.

