\qquad

Moving Parabolas Around

You may experiment on your calculator to help you answer these questions.

Review

1. These questions are about the graph of $y=a x^{2}$ where $a \neq 0$.
a. What is the graph called?
b. Where are its x - and y -intercepts?
c. Where is its vertex?
d. What determines whether it is a smile or a frown?
e. How does changing a change the shape of the graph?
2. These questions are about the graph of $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{p})(\mathrm{x}-\mathrm{q})$ where $\mathrm{a} \neq 0$.
a. What is this form of a quadratic function called?
b. Where are the x - and y -intercepts?
(Hint: answer in terms of $\mathrm{a}, \mathrm{p}, \mathrm{q}$.)
c. How does one find the vertex?
d. What determines whether the parabola is a smile or a frown?
e. How does changing a change the shape of the graph?

Moving Left and Right

3. What does the graph look like if $p=q$?
4. Find the equation of a parabola whose vertex is at:
a. $(3,0)$ a smile, then a frown
b. $(-2,0)$
c. $(h, 0)$. Explain.

Moving Up and Down

5. These questions are about the graph of the function $y=a x^{2}+c$
a. Where is its vertex?
b. How is it related to the graph of $y=a x^{2}$?
6. Find the equation of a parabola whose vertex is at:
a. $(0,-3)$ a smile, then a frown
b. $(0,2)$
c. $(0, v)$. Explain.

Moving Anywhere

7. Find the equation of a parabola whose vertex is at:
a. $(3,-2)$ a smile, then a frown
b. $(-2,3)$
c. (h, v). Explain.
8. Tell where the vertex of these parabolas is just by looking at the formulas. Be careful about plus and minus.
a. $y=(x-4)^{2}$
b. $y=x^{2}+5$
c. $y=(x-4)^{2}+5$
d. $y=(x-4)^{2}-5$
e. $y=(x+4)^{2}+5$
f. $y=(x+4)^{2}-5$
g. $y=.5(x+4)^{2}-5$
h. $y=-.5(x+4)^{2}-5$
9. Using the format of the previous problem, write the equations of five different-shaped parabolas each with vertex at (1, 2). How do you change the shape and the orientation?
10. This is called vertex form:

$$
y=a(x-h)^{2}+v
$$

a. Where is the vertex for this parabola?
b. What does a do?
c. What does h do?
d. What does v do?

