Geometric Puzzles Virtually

Henri Picciotto www.MathEducation.page henri@MathEducation.page blog.MathEducation.page Twitter: @hpicciotto

Why Puzzles?

\$\Fun and interesting!
\$Works with all ages
\$Status equalizer
Math content and practices

Virtual Manipulatives

vs. concrete materials

Tangrams

Line symmetric

Not line symmetric

Make a geometric figure, using 1 to 7 pieces

♦ Take a screenshot

Share on the appropriate page, indicating the number of pieces

Add pages if needed

What squares are possible?

Tangram Measurements (inches and square inches)

Pieces	1	2	3	4	5	7
Area	2	2	4	8	8	16
Side	$\sqrt{2}$	$\sqrt{2}$	2	$2\sqrt{2}$	$2\sqrt{2}$	4

 $\sqrt{8} = 2\sqrt{2}$

A 6-piece square is impossible

Total tangram area: 16 in²
6-piece area: 15, 14, or 12 in²
Cannot be a tangram square!

Convex Polygons

All angles $< 180^{\circ}$

yes

no

What convex tangram figures are possible? triangles, quadrilaterals, pentagons, ...?

(turn angles)

A convex 9-gon is impossible (proof by zombie)

♦ All tangram angles are multiples of 45°
♦ Greatest possible interior angle: 135°
♦ Least possible exterior (turn) angle: 45°
♦ 8 x 45° = 360° so there cannot be 9 angles

A convex 8-gon is impossible (proof by trying to do it!)

Polyominoes are shapes that are made by joining squares edge-to-edge.

Pentominoes

8 holes. Can you get more?

Congruent Figures

Triples?

Pentomino Rectangles

Pentomino Rectangles

- If a figure can be covered with pentominoes, what can you say about its area?
- If a figure can be covered with pentominoes, what can you say about its sides?
- If a rectangle can be covered with pentominoes, what can you say about its sides?

Pentomino Blowups

Double the dimensions (two cannot be solved) Triple the dimensions (all are possible, but hard!)

Vhen the dimensions are doubled, the area is multiplied by 4

When the dimensions are tripled, the area is multiplied by 9

♦ Ratio of areas?

♦ Scaling factor?

Taking it further!

♦ Rep-tiles

Supertangrams

Lots of links in the "handout" on my **Talks** page.

Henri Picciotto www.MathEducation.page henri@MathEducation.page blog.MathEducation.page Twitter: @hpicciotto