Geometric Puzzles:
 Tiles and Rep-Tiles

Henri Picciotto
henri@MathEducation.page www.MathEducation.page blog.MathEducation.page twitter: @hpicciotto

Tangrams

Make a square, using 1 to 7 pieces. What squares are possible?

Tangram Measurements

(inches and square inches)

Pieces	1	2	3	4	5	7
Area	2	2	4	8	8	16
Side	$\sqrt{2}$	$\sqrt{2}$	2	$2 \sqrt{2}$	$2 \sqrt{2}$	4
$\sqrt{8}=2 \sqrt{2}$						

A 6-piece square is impossible

\diamond Total tangram area: $16 \mathrm{in}^{2}$
\diamond Individual pieces: 1, 2, or 4 in 2
\diamond 6-piece area: 15,14 , or 12 in 2
\diamond Side of 6-piece square?

Convex Polygons

All "turn angles" turn in the same direction

yes

yes

All interior angles < 180°
no

What convex tangram n-gons are possible?

 triangles, quadrilaterals, pentagons, ...?

Exterior Angles

(turn angles)

A convex 9-gon is impossible (proof by zombie)

\diamond All tangram angles are multiples of 45°
\diamond Greatest possible interior angle: 135°
\diamond Least possible exterior (turn) angle: 45°
$\diamond 8 \times 45^{\circ}=360^{\circ}$ so there cannot be 9 angles
5-gon? 6-gon? 7-gon? 8-gon?

\leftarrow convex 5-gon

\leftarrow convex 6-gon

\leftarrow convex 7-gon

\leftarrow convex 8 -gon? $:$

Polyominoes

(closed grid-paper figures: no diagonals, no crossings)

In-corners and out-corners

What is the pattern?
Why is it always true?

Proof by zombie again!

Total turning: $4 \times 90^{\circ}=360^{\circ}$

Every additional right turn must be canceled by a left turn.

Pentominoes

Holes

Three-piece pentomino puzzles

Generalizing

\diamond What rectangles are possible?
\diamond What "triangles" are possible?
\diamond What simultaneous rectangles?
\diamond...triangles? combinations?

Pentomino Blowups

\diamond When the dimensions are doubled, the area is multiplied by 4
\diamond When the dimensions are tripled, the area is multiplied by 9

4

Rep-tiles

Find some rep-tiles!

use the template, grid paper, and / or triangle paper

Rep-Triangles

Find triangles that can be tiled with

$$
2,3,4,5, \ldots
$$

scaled copies of themselves.

5
initial

Reminder:

Lots of links in the "handout" on my Talks page.

Henri Picciotto

 www.MathEducation.page henri@MathEducation.page blog.MathEducation.page Twitter: @hpicciotto