Geometric Puzzles: Tiles and Rep-Tiles

Henri Picciotto henri@MathEducation.page www.MathEducation.page blog.MathEducation.page twitter: @hpicciotto

Make a square, using 1 to 7 pieces. What squares are possible?

Tangram Measurements (inches and square inches)

Pieces	1	2	3	4	5	7
Area	2	2	4	8	8	16
Side	$\sqrt{2}$	$\sqrt{2}$	2	$2\sqrt{2}$	$2\sqrt{2}$	4

 $\sqrt{8} = 2\sqrt{2}$

A 6-piece square is impossible

Total tangram area: 16 in²
Individual pieces: 1, 2, or 4 in²
6-piece area: 15, 14, or 12 in²
Side of 6-piece square?

Convex Polygons

All "turn angles" turn in the same direction

What convex tangram n-gons are possible? triangles, quadrilaterals, pentagons, ...?

(turn angles)

A convex 9-gon is impossible (proof by zombie)

♦ All tangram angles are multiples of 45°
♦ Greatest possible interior angle: 135°
♦ Least possible exterior (turn) angle: 45°
♦ 8 x 45° = 360° so there cannot be 9 angles

5-gon? 6-gon? 7-gon? 8-gon?

← convex 5-gon

← convex 6-gon

← convex 7-gon

Polyominoes

(closed grid-paper figures: no diagonals, no crossings)

In-corners and out-corners

What is the pattern? Why is it always true?

Total turning: $4 \times 90^\circ = 360^\circ$

Every additional right turn must be canceled by a left turn.

Pentominoes

Holes

Three-piece pentomino puzzles

Layers (congruent figures)

Generalizing

- ◊ What rectangles are possible?
- ♦ What "triangles" are possible?
- What simultaneous rectangles?
- ♦ ...triangles? combinations?

Pentomino Blowups

When the dimensions are doubled, the area is multiplied by 4

When the dimensions are tripled, the area is multiplied by 9

Rep-tiles

Find some rep-tiles!

use the template, grid paper, and / or triangle paper

Rep-Triangles

Find triangles that can be tiled with 2, 3, 4, 5, ... scaled copies of themselves.

Pinwheel tiling

Reminder: Lots of links in the "handout" on my **Talks** page.

Henri Picciotto www.MathEducation.page henri@MathEducation.page blog.MathEducation.page Twitter: @hpicciotto