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Teacher Notes
These lessons provide the framework of an approach to computing geometric transformations 
in a precalculus level course, starting with complex numbers, and ending with matrices.

The lessons assume a fair amount of teacher explanation and class discussion, and should not 
be expected to teach themselves. The unit is based on material I taught at The Urban School of 
San Francisco, in my Space class, an advanced high school geometry elective. The course and 
this material evolved over a dozen iterations. See MathEducation.page/space.

Prerequisites

Students should have been introduced to complex numbers, and be familiar with their 
rectangular and polar representations. At The Urban School, that introduction happens 
towards the end of our Algebra 2 course. See our Complex Numbers unit at 
MathEducation.page/alg-2/complex.

Students should also have been introduced to matrices and matrix multiplication. I used the 
approach in the University of Chicago School Mathematics Project Advanced Algebra book.

Technology

Some lessons assume the use of the Texas Instruments TI-89 calculator, including some of its 
CAS capabilities. It is of course possible to do much of this work with other graphing 
calculators or computer software. See for example my attempt at a GeoGebra version, where 
you found this document. (If you create a version of this packet using some other technological 
support, I will gladly credit you and post it alongside this version.)

Review: Slope of Perpendicular Lines

This lesson reviews the “opposite reciprocal” result, but also proves it. It also includes a 
reminder of similar triangles. All of this will be needed in the subsequent pages.

Complex Numbers Basics (and Transformations)

This lesson combines a (perhaps too sketchy) review of complex numbers with an introduction 
to two key questions we address in this unit: 
◊ How do we compute the coordinates of images of points under various transformations?
◊ How do we use composition of transformations we know how to compute, in order to figure 

out more challenging computations?

Note that #3 does not require knowing about multiplication in polar form. (This fact will be 
important later.)

#5. Multiply by (1, θ) -- a complex number on the unit circle
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#6. Subtract p+qi, multiply by (1, θ), add p+qi. In other words, translate to the origin, rotate 
around the origin, translate back.

Complex Multiplication in Polar Form

This two-part lesson ends with a proof of the geometric interpretation of complex number 
multiplication. One way to teach it is to have the students work through the first page on 
graph paper, providing support as needed. Then, present the key ideas of the second page, 
culminating with the proof, without the worksheet. And finally have the students work 
through the second page themselves. This figure may be useful on a projector or interactive 
white board:

See also the corresponding GeoGebra file at mathed.page/space/mult-proof.ggb
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The heart of the proof is SAS similarity between ∆ONP and ∆ORU. Avoid a circular argument! 
U = P·R follows from the argument in #2 of the first page which is generalized in #1 on the 
second page. The right angle at ∠R follows from the argument involving slopes that we used 
in the “Complex Numbers” lesson. 

Computing Any Isometry Using Complex Numbers

The five-step method for #7 is: translate so the y-intercept is at the origin, rotate so the line 
coincides with the x-axis, reflect, rotate back, translate back. Assuming θ = tan-1(2), this 
calculation will do it:

(conj(((3+2i) – 5i) (cos(-θ)+ i sin(-θ))))(cos(θ)+i sin(θ)) + 5i

Matrices

The remaining lessons on the one hand replicate the approach we used with complex 
numbers, using matrices, and on the other hand introduce increasingly efficient ways to use 
the TI-89 calculator to actually do the computations . 

Having students themselves find the matrices for the transformations gives them a sense of 
control of this technique. 
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Review: Slope of Perpendicular Lines
0. What are the three ways to show triangles are similar?

1. Consider two perpendicular lines L and M. What is the relationship between their slopes?

2. Use the slope triangles in the figure above to prove this. Hint: start by proving the triangles 
are similar. (Slope triangles by definition have perpendicular sides. The labels h, q, and r 
represent the lengths of the segments.)

3. Now prove the converse of this result. (“If the slopes of two lines are … then the lines are 
perpendicular.”) Hint: you can do it by drawing two congruent right triangles.
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Complex Numbers Basics (and Transformations)
You can think of a complex number as a vector that starts at the origin.

Rectangular form: a+bi, with i2 = -1.  
a is the real part. b is the imaginary part.

Polar form: (r, θ)  
r is known as the radius, the modulus, the magnitude, or the absolute value of the number. 
θ is the angle or argument.

1. Use basic trig to convert from polar to rectangular form and vice versa. (Draw an example 
on graph paper to help you remember how to do this. Work out examples in each of the 
four quadrants.)

2. Complex addition: (a+bi)+(c+di). 
a. Rearrange the terms so that the real part is first, and the imaginary part last.
b. Draw an example of this on graph paper, and explain how this addition works like 

vector addition. 
c. How would you use complex numbers to find the image of (a, b) by a translation (v, w)?

3. Complex multiplication: simple cases. For each example below, draw an example on graph 
paper.
a. If k is a real number, distribute k(c+di). How does the resulting vector (the result of 

your calculation) compare with the original (c+di)? This transformation is called a 
___________ with factor ____ and center at _______________.

b. Distribute i(c+di). Write the result the usual way, with the real part first, and the 
imaginary part next. How does the resulting vector compare with the original? What is 
this transformation called?

c. Distribute ki(c+di). Describe how the resulting vector compares with the original. This 
transformation does not have a name. It is the composition of the previous two.

In Math 3, you learned that (r1, θ1)·(r2, θ2) = (r1r2, θ1+θ2).

4. Put that in words: to multiply complex numbers in polar form…

5. How would you use complex numbers to find the image of (a, b) by a rotation of θ° centered 
at the origin?

6. How would you use complex numbers to find the image of (a, b) by a rotation of θ° 
centered at (p, q)?
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 Complex Multiplication in Polar Form: A Specific Example
In Math 3, you learned that (r1, θ1)·(r2, θ2) = (r1r2, θ1+θ2). We will use geometry to prove this, 
starting from the definition of i as the square root of –1.

0. Multiplying a complex number by i is the same as a ______________ around _____________

We will start by analyzing a specific example: (2+i) (3+4i)

1. a. Draw these two complex numbers as vectors on graph paper. 
b. Label the origin as O.
c. Label the point 2+i as P, and 3+4i as Q.
d. Label the point directly below P on the x-axis N. 

2. Distributing, we see that P·Q = (2+i)Q = 2Q + iQ
a. Find the points for 2Q and iQ on your graph. Label them R and T.
b. Find the point for 2Q+iQ, and label it U.

3. Explain: P·Q=U 

We’d like to show that the magnitude of U is the product of the magnitudes of P and Q, and 
that it’s angle is the sum of their angles. We will do this with the help of triangles ∆OUR and 
∆OPN.

4. Using only the information about how we created U and R, show that ∆OUR and ∆OPN 
are similar. What is the scaling factor?

5. Show that |U|=|P|·|Q|

6. Show that ∠ NOU = ∠NOP+∠NOQ

If you understand this so far, you’re ready to generalize. 
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Complex Multiplication in Polar Form: Generalizing
This time we will go through the argument with a generic figure. P=a+bi, Q=c+di, and the 
other points are defined as in the figure below.

1. Explain this: (a+bi)(c+di) = a(c+di) + bi(c+di). 

Another way to write the above is:  
(a+bi)Q = aQ + biQ if Q is the complex 
number (c+di).

By answering the next few questions, you 
will see that this figure is an illustration of the 
above equation. 

2. On the figure, what point represents:
a. aQ
b. iQ
c. biQ
d. aQ + biQ

3. Explain why U = P·Q, using #2.

Up to this point, we worked with the rectangular 
form of P, Q, and U. To prove the result we are 
after, we will now switch to polar form, and use 
similar triangles in the figure above.

4. Say that P = (r1, θ1), Q = (r2, θ2), and  
U = (r, θ). Label the figure accordingly. 

5. Prove that ∆ONP is similar to ∆ORU. What is the scaling factor? 

6. Prove that r = r1r2.

7. Prove that θ = θ1+θ2.

Therefore: (r1, θ1)·(r2, θ2) = (r1r2, θ1+θ2)

QED
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Computing Any Isometry Using Complex Numbers
Calculator shortcuts: 
◊ Converting from rectangular to polar: for example 3+4i → Polar (in the Catalog under P) 
◊ Converting from polar to rectangular: it’s simply r·cos(θ)+r·sin(θ)·i, or for example  

(3 ∠ 45) → Rectangular (in the Catalog under R) (∠ is 2nd EE)

1. Make sure you know how to compute the image of a point (a,b) under any translation or 
rotation, using complex numbers. 
a. Translation by a vector (v,w)
b. Translation by a vector (r,θ)
c. Rotation by θ degrees around the origin.
d. Rotation by θ degrees around a point (p,q)

What we are missing is a method for computing reflections.

2. The image of (a,b) after reflection in the x-axis is ___________.

3. The image of a+bi after reflection in the x-axis is ___________.

This image is called the conjugate of a+bi, which the TI-89 will return if you enter conj(a+bi). 

Three-step method: We will find the image of (a,b) in a line y=mx, by rotating so the line lies 
on the x-axis, then we’ll reflect across the x-axis, then we’ll rotate back.

4. What is the angle between y = 2x and the x-axis?

5. What is the reflection of the point (3,2) across the line with equation y=2x?

6. Now let us reflect (3,2) in the line y=x.
a. Predict the coordinates of the image
b. Check whether the three-step method gives you that answer.

7. Work out a strategy (five steps) to reflect (3,2) across the line with equation y = 2x+5. Find 
the coordinates of the image.

8. Work out a strategy to glide-reflect (3,2) with mirror y=x+4 and vector (5,5) 

You can now compute the results of any isometry! However this method has shortcomings: 
◊ It is tricky to keep track of parentheses and order of operations.
◊ It is inconvenient when calculating the image of a polygon, as the calculation has to be done 

for each vertex. 
◊ It does not generalize to three dimensions. 
All of those concerns are addressed by using matrices. In fact, all computer animation is done 
by matrix calculations of geometric transformations. This is what we will learn next.
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Computing Some Transformations with Matrices
We will represent points using a vertical (2 by 1) format: . An n-gon will be represented by a 

2 by n matrix. For example:  represents a right triangle. 

1. Find a matrix M such that M·  will correspond to the image of (x,y) after a dilation 

centered at the origin, with factor k.

2. Find a matrix M such that M·  will correspond to the image of (x,y) after a reflection in 

the y-axis.

3. Find a matrix M such that M·  will correspond to the image of (x,y) after a reflection in 

the y=x line.

4. Find a matrix M such that M·  will correspond to the image of (x,y) after a 180° rotation 

around the origin.

In a previous lesson, you found the formula for the image of a point (x,y) under a rotation of 
θ° around the origin. 

5. Find a matrix M such that M·  will correspond to the image of (x,y) after a rotation of θ° 

around the origin.

In a previous lesson, you found a way to use the complex conjugate as part of a three-step 
process to reflect a point across any line through the origin. 

6. Find a sequence of three matrices L, M, N such that N·M·L·  will correspond to the image 

of (x,y) after a reflection in the y=2x line. Note that the matrices are written from right to 
left in the multiplication.

[x
y]

[1 2 1
1 1 3]

[x
y]

[x
y]

[x
y]

[x
y]

[x
y]

[x
y]
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Matrices on the Calculator
Your calculator can do matrix multiplication.

To enter a matrix, enclose it in square brackets (2nd comma, and 2nd ÷). Within that, each row 
is enclosed in square brackets, and the items on the row are separated by commas. 

For example, to enter the multiplication · , type: [[1,0][0,-1]]x[[2][3]] 

1. Check that the above multiplication gives the expected result. 

If, for example,  you want to use sin 56° in a matrix, just enter sin(56). You don’t have to get a 
decimal for it.

2. Use matrix multiplication to find the image of (2, 3) after a rotation of 22° around the origin.

Matrices can be saved in memory. 

3. The next three problems will use a 33° rotation. Create the matrix for it and use STO to 
store it as r.

We don’t yet know how to use matrix multiplication for translations, so you’ll have to do 
translations yourself in the next two problems.

4. Use matrix multiplication to find the image of (2, 3) after a rotation of 33° around (5, 4)

5. Use matrix multiplication to find the image of (5, 4) after a rotation of 33° around (2, 3)

Matrices allow you to transform many points in a single calculation. 

For example, to rotate (9, 4), (7, 5), and (8, 6) 33° around the origin, you can do r·

6. What are the images of the three points?

[1 0
0 −1] [2

3]

[9 7 8
4 5 6]
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Matrices on the Calculator: Shortcuts
It is tedious to enter matrices over and over. Here is a shortcut, using STO.

[[cos(t),-sin(t)][sin(t),cos(t)]] → ro
[[1,0][0,-1]] → rx

You will not need to enter these matrices again.  

1. What do these matrices do? You should recognize them without looking at your notes.

2. Explain the calculator’s response if you enter
ro|t=45
ro|t=60

3. How would you use matrix multiplication to reflect a point (x0,y0) around a line that makes 
an angle θ with the positive x-axis? 
a. Say this in words, not symbols

b. Write the matrix multiplication, remembering that you go from right to left.

4. Test your answer with the matrices we entered, using 45° since we know what the result of 
that reflection would be. Here is how you would enter this:

(ro|t=45)*rx*(ro|t=-45)[[x0][y0]]
Make sure you got the answer you expected.

5. If a line has equation y = 3x, what angle does it make with the positive x-axis?

6. What is the image of (4, 5) across the line y = 3x? 
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Matrices and Translation
The shortcoming of using matrix multiplication in the way we have been is that it does not 
work for translations. This problem is solved if we represent points as 3 by 1 matrices, like this: 

. 

1. Find a 3 by 3 matrix M such that M·  will correspond to the image of (x,y) after a 

translation by vector (v,w).

2. Find 3 by 3 matrices for 
a. Reflection in the x-axis
b. Rotation around the origin by an angle θ.

3. Find a sequence of three matrices L, M, N such that N·M·L·  will correspond to the 

image of (x,y) after a θ° rotation around a point (p,q). Remember that the matrices are 
written from right to left in the multiplication.

4. Find a sequence of five matrices J, K, L, M, N such that N·M·L·K·J·  will correspond to 

the image of (x,y) after a reflection across the line y=mx+b. 

[
x
y
1]

[
x
y
1]

[
x
y
1]

[
x
y
1]

© Henri Picciotto, MathEducation.page p. 13



Space Name:__________________

Better Calculator Shortcuts
Setup

1. To create an easy-to-use function that will output a 3 by 3 translation matrix, use Define, 
which is in the F4 menu:

Define tr(v,w)=[[1,0,v][0,1,w][0,0,1]]
From now on, tr(3,4), for example, will output the translation matrix for vector (3,4).

2. Use the same method to make functions for:
a. a 3 by 3 matrix for a rotation of t° around the origin -- ro(t). (You may need to delete the 

matrix ro first.)
b. a 3 by 1 matrix for a point with coordinates (a,b) -- pt(a,b)

3. For reflection across the x-axis, you don’t need a function, as it is always the same matrix. If 
you don’t yet have it, use STO to store the 3 by 3 matrix under the name rx.

4. For convenience, you should also store a 3 by 1 matrix for (x,y) under the name xy.

Practice

5. To rotate (2,3) 53° around (4,3), do this:
tr(4,3)*ro(53)*tr(-4,-3)*pt(2,3)

6. To find a matrix for rotation of any point (x,y) t° around (a,b):
tr(a,b)*ro(t)*tr(-a,-b)*xy

7. Reflect (2,3) across the line y=x+4
a. “manually” on graph paper
b. using matrices on the calculator (you need five matrices in reverse order!)
Hopefully you get the same answer both ways.

Polygons

8. Store a 3-rows, n-columns matrix (n≥3) for a polygon, as po. I recommend: 

To draw your polygon, you will need to get the dr program into your calculator.

9. You can draw your polygon by entering: dr(po)

10. You can draw images of your polygon by entering expressions like dr(ro(45)*po). Make an 
interesting design!

[
1 1 2
1 3 1
1 1 1]
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Review: From Complex Numbers to Matrices
A point in the plane can be thought of as a ____________ number, just like a point on a number 
line can be thought of as a ________ number.

1. Write the following three famous points in a+bi (rectangular) form:
a. (1, 45°)
b. (1, 60°)
c. (1, 90°)
For the purpose of the following exercises, call these points respectively s, t, and i.

2. s, t, and i are all on a certain geometric figure. What am I referring to?

3. Using your calculator, or not, compute the following, and show the results on graph paper:

4. Describe the results of the computations above, using the words translation or rotation. 
(There are two ways of doing this for each example.)

5. Explain how to use complex numbers to translate a point (x, y) by a vector (v, w)

6. Write the coordinates of the point (1,θ) in a+bi form.

7. Explain how to use complex numbers to rotate a 
point (x, y) by an angle θ around the origin.

8. Use the answer to the previous problem to explain 
where the rotation matrix comes from.

a. s+t b. t+i c. s+i

d. s·t e. t·i f. s·i
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dr(p) 
Prgm 
For i,1,colDim(p)-1 
Line p[1,i],p[2,i],p[1,i+1],p[2,i+1] 
EndFor 
Line 
p[1,1],p[2,1],p[1,colDim(p)],p[2,colD
im(p)] 
EndPrgm 


