Space

An Alternate Elective after Algebra II

Henri Picciotto
MathEducation.page

Space: topics

\diamond Transformational geometry

- Abstract algebra
\diamond Symmetry
- Tiling
\diamond Dimension
- 3D: polyhedra
- 4D: introduction

Transformations

trans formatíonal geomaetry

RICHARD G. BROWN

[^0]DALE SEYMOUR PU日LICATIONS

Fundamental Theorem of Isometries: every isometry of the plane is a reflection, a rotation, a translation, or a glide reflection.

Computing transformations using complex numbers:

\diamond Translation: add a+bi
\diamond Rotation around the origin: multiply by $\cos \theta+i \sin \theta$
\diamond Rotation around (a,b): subtract a+bi, rotate around the origin, add $\mathrm{a}+\mathrm{bi}$

Computing transformations

 using matrices

Space: topics

\diamond Transformational geometry

- Abstract algebra

\diamond Symmetry

- Tiling
\diamond Dimension
- 3D: polyhedra
- 4D: introduction

Transformations

Symmetry

Dimension

$$
\begin{aligned}
& \text { * } * \infty
\end{aligned}
$$

Transformations

Symmetry

Dimension

Transformations
Symmetry
Dimension

Transformations Symmetry
Dimension

Handbook of Regular Patterns by Peter Stevens

The Seven Line Symmetry Groups
و

$$
\begin{aligned}
& \text { cesereserege } \\
& \text { 9999995 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2.6.9.6.9.6.9.6 } \\
& \text { g|e.a|c.9|e.a|c.s|e.a|s } \\
& \begin{array}{c|c|c|c|c}
a & 0 & 0 & 0 & 0 \\
\hline-1 & 0 & e & 0 & 0
\end{array}
\end{aligned}
$$

Transformations

Symmetry
Dimension

Transformations

 Symmetry

Symmetry
Dimension

Transformations

Symmetry

Dimension

Space: topics

\diamond Transformational geometry

- Abstract algebra
\diamond Symmetry
- Tiling
\diamond Dimension
- 3D: polyhedra
- 4D: introduction

Transformations

 SymmetryDimension: 3D

\diamond Platonic and Archimedean polyhedra
\diamond Duality
\diamond Euler's and Descartes' theorems
\diamond Review of geometry and trigonometry

Dimension: 3 D

> The chief reason for studying regular polyhedra is still the same as in the time of the Pythagoreans, namely, that their symmetrical shapes appeal to one's artistic sense.

Transformations

Symmetry
Dimension: 3 D

Transformations

Symmetry

Dimension: 3 D

Dimension: 3D

Dimension: 3 D

CABRI ${ }^{\circ}$ Bロ ve
 - 0

Transformations

Symmetry

Dimension: 4 D

Transformations

Symmetry

Dimension: 4D

Dimension: 4 D

Transformations

yminety

Dimension: 4 D

Space
 An Alternate Elective after Algebra II

Henri Picciotto The Urban School of San Francisco

math-ed@picciotto.org www.picciotto.org/math-ed

Space overview

Who takes the class

Juniors, before
Calculus

Seniors, instead of or in addition to Calculus

Electronic tools

Space overview

Who takes the class

Topics
Abstract algebra
Transformations
Review

Resources
Symmetry
Dimension (3D, 4 D)

Electronic tools

Space overview

Who takes the class

Algebra
Review
Geometry
Trigonometry

Electronic tools

Space overview

Who takes the class

 Review
Resources

Transformational Geometry by Richard Brown

Algebra: Themes, Tools, Concepts
by Anita Wah and Henri Picciotto
Geometry Labs by Henri Picciotto

Handbook of Regular Patterns by Peter Stevens

Zome Geometry
by George Hart and Henri Picciotto
Flatland by Edwin Abbott

Space overview

Who takes the class

Cabri II +
TI-89
Cabri ${ }_{3} \mathrm{D}$

Review

Resources

Electronic tools

Space

An Alternate Elective after Algebra II

Henri Picciotto
The Urban School of San Francisco
math-ed@picciotto.org www.picciotto.org/math-ed

Summer Workshops

 for TeachersAugust 4-7
Grades 8-ıı: Visual Algebra
August io-II
Grades II-I2: No Limits!

Henri Picciotto
Center for Innovative Teaching
Urban School of San Francisco

math-ed@picciotto.org www.picciotto.org/math-ed/cit

[^0]: SPECIAL EDITION PUBLISHED BY

