

An Alternate Elective after Algebra II

Henri Picciotto MathEducation.page

Space: topics

◊ Transformational geometry

- Abstract algebra

◊ Symmetry

- Tiling

◊ Dimension

- 3D: polyhedra

- 4D: introduction

Saturday, April 25, 2009

Symmetry Dimension

transformational geometry

RICHARD G. BROWN

SPECIAL EDITION PUBLISHED BY DALE SEYMOUR PUBLICATIONS

Transformations

Symmetry Dimension

Fundamental Theorem of Isometries: every isometry of the plane is a reflection, a rotation, a translation, or a glide reflection.

Computing transformations using complex numbers:

♦ Translation: add a+bi

 $\$ Rotation around the origin: multiply by $\cos \theta + i \sin \theta$

Rotation around (a,b): subtract a+bi, rotate around the origin, add a+bi

Transformations

Symmetry Dimension

Computing transformations using matrices

Space: topics

◊ Transformational geometry

- Abstract algebra

§ Symmetry

- Tiling

◊ Dimension

- 3D: polyhedra

- 4D: introduction

Handbook of Regular Patterns by Peter Stevens

The Seven Line Symmetry Groups

Transformations

Symmetry Dimension a.

b.

C.

d.

e.

f.

g.

Transformations

Symmetry Dimension

Space: topics

◊ Transformational geometry

- Abstract algebra

◊ Symmetry

- Tiling

Oimension

- 3D: polyhedra
- 4D: introduction

Platonic and Archimedean polyhedra

♦ Duality

\& Euler's and Descartes' theorems

Review of geometry and trigonometry

> The chief reason for studying regular polyhedra is still the same as in the time of the Pythagoreans, namely, that their symmetrical shapes appeal to one's artistic sense. ---H.S.M. Coxeter

An Alternate Elective after Algebra II

Henri Picciotto The Urban School of San Francisco

<u>math-ed@picciotto.org</u> <u>www.picciotto.org/math-ed</u>

Who takes the class

Topics

Review

Resources

Electronic tools

Juniors, before Calculus

Seniors, instead of or in addition to Calculus

Who takes the class

Topics

Review

Resources

Electronic tools

Abstract algebra Transformations Symmetry Dimension (3D, 4D)

Who takes the class

Topics

Review

Resources

Electronic tools

Algebra Geometry Trigonometry

Who takes the class

Topics

Review

Resources

Electronic tools

Transformational Geometry by Richard Brown

Algebra: Themes, Tools, Concepts by Anita Wah and Henri Picciotto

Geometry Labs by Henri Picciotto

Handbook of Regular Patterns by Peter Stevens

Zome Geometry by George Hart and Henri Picciotto

Flatland by Edwin Abbott

Who takes the class

Topics

Review

Resources

Electronic tools

Cabri II+ TI-89 Cabri 3D

An Alternate Elective after Algebra II

Henri Picciotto The Urban School of San Francisco

math-ed@picciotto.org www.picciotto.org/math-ed

Summer Workshops for Teachers

August 4-7 Grades 8-11: Visual Algebra August 10-11 Grades 11-12: No Limits!

Henri Picciotto Center for Innovative Teaching Urban School of San Francisco

math-ed@picciotto.org www.picciotto.org/math-ed/cit