

An Alternate Elective after Algebra II

Henri Picciotto MathEducation.page

Math on Another Planet

A Long Month

Evary											
Мо	Tu	We	Th	Fr	Sa	Su					
			1	2	3	4					
5	6	7	8	9	10	11					
12	13	14	15	16	17	18					
19	20	21	22	23	24	25					
26	27	28	29	30	31	32					
33	34	35	36	37	38						

Isomorphism

+	d	e	f	d + e	e + f	d + f	d + e + f	+	Mo	Tu	We	Th	Fr	Sa	Su
d								Мо							
e								Tu							
f								We							
d + e								Th							
e + f								Fr							
d + f								Sa							
d + e + f								Su							

Space: topics

- Abstract algebra
- ♦ Transformational geometry
- ♦ Symmetry
- ◊ Dimension
 - 3D: polyhedra
 - 4D: introduction

Symmetry Dimension

SPECIAL EDITION PUBLISHED BY

Symmetry Dimension

> Transformations: one-to-one functions (domain, range: the whole plane)

> Sometries: transformations that preserve distance

Symmetry Dimension

Fundamental Theorem of Isometries: every isometry of the plane is a reflection, a rotation, a translation, or a glide reflection.

Symmetry Dimension

Computing transformations using complex numbers:

♦ Translation: add a+bi

 $\$ Rotation around the origin: multiply by $\cos \theta + i \sin \theta$

Rotation around (a,b): subtract a+bi, rotate around the origin, add a+bi

Symmetry Dimension

Computing transformations using matrices

Handbook of Regular Patterns by Peter Stevens

The Seven Line Symmetry Groups

Platonic and Archimedean polyhedra

♦ Duality

Euler's and Descartes' theorems

Review of geometry and trigonometry

> The chief reason for studying regular polyhedra is still the same as in the time of the Pythagoreans, namely, that their symmetrical shapes appeal to one's artistic sense. ---H.S.M. Coxeter

LAB 6.5 Slicing a Cube

Name(s)

Equipment: Transparency, stiff paper, scissors, adhesive tape

Imagine that you slice a cube in a direction parallel to one of the faces. The shape of the slice will be a square. Now imagine that you slice a cube parallel to one of the bottom edges, but tilted from the horizontal. The shape of the slice will be a rectangle.

What shapes are possible for a slice? To investigate this, you will use a hollow transparent cube and stiff paper to simulate the slices.

An Alternate Elective after Algebra II

Henri Picciotto The Urban School of San Francisco

<u>math-ed@picciotto.org</u> <u>www.picciotto.org/math-ed</u>

Who takes the class

Topics

Review

Resources

Computer tools

Juniors, before Calculus

Seniors, instead of or in addition to Calculus

Who takes the class

Topics

Review

Resources

Computer tools

Abstract algebra Transformations Symmetry Dimension (3D, 4D)

Who takes the class

Topics

Review

Resources

Computer tools

Algebra Geometry Trigonometry

Who takes the class

Topics

Review

Resources

Computer tools

Transformational Geometry by Richard Brown

Algebra: Themes, Tools, Concepts by Anita Wah and Henri Picciotto

Geometry Labs by Henri Picciotto

Handbook of Regular Patterns by Peter Stevens

Zome Geometry by George Hart and Henri Picciotto

Flatland by Edwin Abbott

Who takes the class

Topics

Review

Resources

Computer tools

Cabri II+ Cabri 3D (vZome)

An Alternate Elective after Algebra II

Henri Picciotto The Urban School of San Francisco math-ed@picciotto.org www.picciotto.org/math-ed

Summer Workshops for Teachers

August 4-7 Grades 8-11: Visual Algebra August 10-11 Grades 11-12: No Limits!

Henri Picciotto Center for Innovative Teaching Urban School of San Francisco

math-ed@picciotto.org www.picciotto.org/math-ed/cit