
Boxer: A Teacher’s Experience
Henri Picciotto

MathEducation.page
henri@mathed.page

ABSTRACT
I summarize my 20-year involvement with Boxer, in and out of
the classroom. I reflect on successes and failures, and share some
thoughts about its possible uses in today’s computational
landscape.

CCS Concepts
• Applied computing → Education
• Computer-assisted instruction

Keywords
Math education; introduction to programming; computational
medium; personal computing.

1. INTRODUCTION
I’m a lifelong math educator with a particular interest in learning
tools — electronic and otherwise.

I used computers in the classroom starting in the late 1970’s and
until my retirement in 2013. I still design applets for math
education and share them on my website. From 1988 to 2007, I
used Boxer as an environment to teach programming basics to a
wide range of secondary school students, to create tools for use in
our math program, and as an environment for interactive
notebooks. Along the way, I also used Boxer for my own
purposes: as presentation software, to think about mathematical
questions, and to help me create word puzzles and games.

In this paper, I reflect on my Boxer experiences.

2. MY FIRST EXPERIENCE
My first Boxer experience was in a six-week summer workshop
with a heterogeneous group of middle school students. The topic
of the course was sampling, which we were to approach through
simulation, first with assorted hands-on materials, and later using
Boxer. We met for three hours in the morning, and the students
had an open Boxer lab every afternoon. It was a heterogeneous
group: some had never programmed anything before, others had a
fair amount of experience in other languages.

The overall approach in the course was inspired by [4]. In that
book, the simulation of binomial distributions is carried out via
coin-flipping and the use of random-number tables. I added
additional experiments using marbles in an urn, ten-sided dice,
and spinners. (The course also included teacher-created tools in
Boxer, and a more mathematical exploration of binomial
distributions, which I will not discuss here.)

As it turned out, the hands-on introduction, combined with the
afternoon Boxer labs, yielded impressive results, as each team of

three or four students managed to create impressive final projects
in Boxer. See [9] for a fuller description of the course.

That paper’s conclusion: “One crucial pedagogical lesson of this
course is a better understanding of how much is gained when
students have the flexibility to integrate prewritten tools with the
results of programming their own.” I was eager to bring those
gains to my school, and expected that it would revolutionize my
teaching, and my department.

3. INTO A HIGH SCHOOL
What I failed to realize was that the availability of time would be
quite different in a high school. Instead of six weeks to explore a
single concept, including afternoon Boxer labs, I’d be faced with
an over-full curriculum and very little class time for programming
instruction. Still, I managed to do some worthwhile work, and was
able to involve my colleagues and students in a 19-year Boxer
experiment.

3.1 Introduction to Programming
We inserted ten hour-long Boxer sessions into our Geometry
course. The idea was to use turtle graphics to introduce basic
programming ideas. The assignments were largely based on
similar materials we had previously taught using Logo: drawing
regular polygons and using variables and subroutines to create
designs of increasing complexity.

Figure 1. A typical geometry student world box

Instructions were given within Boxer, along with sample short
programs that students could execute, inspect, and modify. Each
student built a World box for their work, including a graphics
box, menu boxes, a Dear Teacher box, and all the do-it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

(program) boxes they created. They were able to customize this
environment to fit their own aesthetics and work style. (See
Figure 1.)

All students took the Geometry course, and thus all had a mini-
introduction to programming.

3.2 Learning Tools
Meanwhile, I developed assorted learning tools. I was not new to
this: prior to my involvement with Boxer, I had created a whole
set of high school math tools and games using Logo. (See [6].) I
was curious to see how a Boxer version of those would compare.
The first thing I noticed was that it was much easier to keep my
programs well organized, so the development was quicker.
(Though of course that was helped by the fact it was my second
time working through those challenges.) Another advantage was
that I was able to incorporate documentation on how to use the
programs in easy reach at key locations within the programs.
The most powerful and versatile tool was Grapher. Initially, this
was a simple graphing program, but over the years I added more
and more features to it, matching and often improving on what
was possible in hand-held graphing calculators. I was also able to
incorporate additional modules: Conic Sections, Matrices,
Isometries, Function Iteration, Parabolic Motion, Riemann Sums,
Slope Fields, a Complex Number Arithmetic game, and a Julia
and Mandelbrot Sets explorer. Boxer made it easy to have this
piece of home-grown software grow dynamically as my classroom
needs evolved. (See Figure 2. The colorful box-tops represent
external modules that can be loaded as necessary.)

Figure 2. The Grapher program

All this made Grapher useful in multiple classes.

3.3 Interactive Notebooks
One of those classes was Infinity, a math elective students took in
11th or 12th grade. In that class, students used Grapher to explore
dynamical systems: the iteration of functions of real numbers and
(later) complex numbers.
I also used Boxer to introduce recursion and have students
program their own fractal images. I created an interactive
notebook to introduce students to these concepts. Again, students
were to inspect sample programs, modify them, and then use them
as models so as to create their own. The results were impressive
and the students were proud of their accomplishments. Many said
that they finally appreciated Boxer, which they had not liked in
Geometry class. (See Figure 3.)

Figure 3. Student-created fractals.

For an overview of the Infinity course, see [8]. For more on Boxer’s role
therein, see [7].

3.4 Computational Medium
Perhaps a dozen students every year signed up for a twelve-week
“Programming and Design” course, using Boxer. Assignments
included the creation of a working analog clock, an interactive
game (e.g. hangman), and a wide-open final project. The latter
often yielded assorted 2D video games, such as versions of Pong,
Wack-a-Mole, and so on. After completing an assignment to
program “paint” tools in Boxer, one student created a comic strip
of sorts, which consisted of seven panels which appeared in
sequence. The images contained a mix of hand-drawn and
computer-drawn objects, as you can see in Figure 4.

Figure 4. A panel from a student-created comic strip.

When teaching this class, one thing I very much enjoyed was my
ability to do just about every part of the job in a single
environment. Here is my top-level box in 2006 (Figure 5):

Figure 5. My Programming course top-level box

In there are past iterations of the course, daily lesson plans,
assignments, my own implementations of the assignments, notes
to myself, a list of project ideas for students who needed a nudge,
what I was going to show parents on back-to-school night, student
work I was going to show at a school assembly, and who knows
what else.

The student-stuff box is a database of sorts, which included
actual student work, the feedback I offered on each student
project, a grade for each project, the quiz scores, and a program I
could use to automatically compute school-required grades.

In all the courses I taught before and after, all these aspects of the
job were distributed in various physical and electronic locations.
Teaching required multiple pieces of software, each with its own
quirks. Having every aspect of this course in a single file with a
consistent interface gave me a sense of the beauty and power of a
multipurpose computational medium.

4. PERSONAL COMPUTING
Developing Grapher and other tools allowed me to enhance my
programming skills. I did get help from the Boxer group, and
from my son who ended up majoring in computer science. But I
also benefited from Boxer’s design, and learned a lot by just
trying things.
I ended up using Boxer at home for my own purposes. As a
presentation tool, it allowed me to break out of the linear format
of PowerPoint and similar programs, and instead to present my
ideas in a logical and hierarchical way by nesting boxes
appropriately. Various small special-purpose programs allowed
me to think about math questions and in some cases to make quick
calculations when grading student projects. I also found Boxer
helpful when designing word games and puzzles. (For example, if
I needed random sets of letters drawn from a Scrabble
distribution, or if I wanted to build a puzzle around the convention
that A=1, B=2, etc.)

5. COMPARISONS
Along with the rest of my department, I used Boxer in the ways
outlined above from 1989 until 2007. As a computer-using math
teacher both before and after that, I can compare that experience
to what happened when using other platforms.

5.1 Introduction to Programming
Before Boxer, I had used Logo to introduce students to
programming. Boxer was definitely a step forward in many ways:
o variables are visible, accessible, and changeable,
o procedures are always within reach, easy to step through and

debug,
o program structure is visible through the organization of the

boxes
o it is much easier to manipulate data
After Boxer, we switched to Snap! [11], a UC Berkeley extension
of MIT’s Scratch [10]. We lost the advantages of Boxer’s mix of
text and code, but the main difference was that the students (as
well as my colleagues) were much more enthusiastic about
programming in Snap! than they had ever been in Boxer.
More importantly, getting to powerful ideas was a lot quicker, as
the whole setup was in reality much more user-friendly thanks to
the “block”-based metaphor. All available primitives are in plain
sight, and can be combined by dragging them, with no risk of
typos, and with a visible logical hierarchy. (See Figure 6.)

Figure 6. Turtle geometry in Snap!

It took hours for students to get comfortable in Boxer, but only
minutes in Snap!. Certainly, even in a full programming language
like Snap!, there is a limit to what can be done in this format. Still,
Snap!’s online user community is substantial, and Scratch’s is
enormous. Children are sharing their programs on a scale that is
unprecedented in any other computer language.

5.2 Learning Tools
Before Boxer, I could not find worthwhile software to support my
teaching, so I used Logo to create my own graphing and geometry
tools. Those had some limitations, but there was no real
alternative at the time.
One tool I worked on in Boxer was Geometer. My first attempts
in that direction compared favorably with then-available
interactive geometry applications. But as the commercial
programs got better, it became more and more difficult for
Geometer to keep up, and I had to enlist help from Boxer experts
to add the features that came to be expected by my colleagues.
Eventually, we had to switch to a commercial program (Cabri)
which was both much more powerful and much easier to use.
Nowadays, the existence of the free and open source GeoGebra
application [3] makes any attempt at a Boxer Geometer futile.
GeoGebra incorporates graphing, a computer algebra system
(CAS), interactive geometry, 3D graphics, a spreadsheet, and a
probability calculator. It is a nearly all-purpose application for
teaching math. It includes many programmable features.
Meanwhile, Desmos [1], the free online graphing calculator, has
achieved a phenomenal dominance in its domain in the US. It
makes it possible for teachers to observe their students’ work in
real time, and to build online games, as well as sequential and
dynamic activities. A “computation layer” allows the more tech-
savvy teachers to enhance those activities.

Both GeoGebra and Desmos have enormous user communities,
and teachers share thousands of applets and activities online.
Some are basic, and some are sophisticated, but again, this is a
computer-based creative community on an unprecedented scale.
It is inconceivable for Boxer to compete with those applications.
Even if I could manage to find a classroom use for a Boxer tool I
designed, it would not be possible to convince either colleagues or
students that it was preferable to using Desmos or GeoGebra in
their respective domains.

5.3 Personal Computing
Nor would it be possible to convince my colleagues, or even
myself, to replace other high-quality software with Boxer. I
routinely use a powerful text editor, a convenient word processor,
multiple web browsers, a to-do-list manager, a crossword
construction program, and so on. It is out of the question for me to
abandon those specialized applications and replace them with
jerry-rigged Boxer alternatives.
On the other hand, I have not been able to find a Boxer
replacement for my personal programming uses. Boxer is an
excellent environment for an amateur programmer such as myself.
My interactions with other computer languages have been
disappointing and frustrating.

6. CONCLUSION
Is there a place for Boxer in education? The theoretical arguments
for Boxer make a lot of sense to me, but I must face the reality
that trying to use it in an actual school did not turn out well.

In the early days of Logo, many students enjoyed that it allowed
them to create beautiful images. That became much less of a
selling point when “paint” and “draw” programs became widely
available. Likewise, as teachers and students grew more
accustomed to computers in the 1990’s and 2000’s, they became
less tolerant of the ways that Boxer defied their expectations of
how to interact with their machines.

During the 19 years that we used it at my school, Boxer’s
popularity among students steadily declined. This downward trend
really accelerated when my school switched to a “one-to-one”
model where every student had their own laptop. By 2006, most
of our students loved their laptops, were expert users of standard
software, and hated Boxer. I don’t have an explanation for this,
but I’m guessing that to them, Boxer felt bland and antiquated.
In the early days, when students had little or no experience with
computers, that was not an issue. But the greater their
acquaintance with mainstream software, the greater their
disappointment when what they took for granted elsewhere just
did not apply in Boxer. This increasing disaffection became so
intense that in 2007 it forced me and my department to jump ship
and start using other platforms.
Another disappointment: in those 19 years, not a single one of my
colleagues ever engaged with Boxer beyond implementing the
uses I had designed. Again, I do not have a clear understanding of
why, but it is a fact I cannot deny. Perhaps it is simply that my
colleagues were not as interested in all this as I was. It is also
likely that they shared some of the students’ attitudes.

In any case, we were very far from achieving the hopes I had after
my initial contact with Boxer.

What would it require for Boxer to take hold in schools in the
2020’s? Here are some thoughts.
o As much as possible, meet users’ interface expectations.
o Give up on competing with high-quality software, especially

free software. It is a losing battle.
o Promote Boxer as a great environment to learn programming.

On that foundation:
ü Demystify software: use Boxer to create basic

versions of fancy applications — not to replace
them, but to explain them.

ü Fill empty niches. If there is a use for which high-
quality software is unavailable or expensive, offer
Boxer alternatives.

Finally, I have no idea if this is doable, but if arbitrary windows
from other applications could be embedded into Boxer, it would
provide a terrific front end for projects or just to organize oneself.
One could annotate files from various applications within a single
interface. As a teacher, I could combine in a single Boxer
document GeoGebra applets and questions for the student, as I
currently do in html (see those applets in [5].) Both GeoGebra and
Desmos make it easy to embed applets created with their software
into html, and to create somewhat interactive notebooks on their
sites. But Boxer could go further by allowing students to insert
their own applets and take control of how their contributions are
organized.
I still like Andrea diSessa’s vision of computational literacy [2],
but I acknowledge that computational literacy today includes the
ability to interact with a wide variety of software, including their
programmable features. Such literacy is now widely present in
schools. It should be welcomed and supported.
I also like Boxer’s basic design. If it is here to stay, it will
instantly become once again part of my life — with more realistic
expectations.

7. REFERENCES
[1] Desmos https://www.desmos.com
[2] DiSessa, A. 2000. Changing Minds, MIT Press.
[3] GeoGebra https://www.geogebra.org
[4] Landwehr, J.M., Swift, J., Watkins, A.E. 1987. Exploring

Surveys And Information From Samples. Dale Seymour
Publications, Palo Alto, CA.

[5] Picciotto, H. “Applets Directory”.
https://www.mathed.page/applets.html

[6] Picciotto, H. 1990. Logo Math: Tools and Games, Terrapin
Inc, Malden MA.

[7] Picciotto, H. 1997. “The Turtle in the Age of the Mouse:
Why I Still Teach Programming”.
https://www.mathed.page/t-and-m/turtle-and-mouse.html

[8] Picciotto, H. 2007. “Infinity”.
https://www.mathed.page/infinity/

[9] Picciotto, H., Ploger, D. 1991. "Learning About Sampling
with Boxer". Journal of Mathematical Behavior, v 10, # 1
(1991)

[10] Scratch https://scratch.mit.edu
[11] Snap! https://snap.berkeley.edu/

