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A New Path to the  
Quadratic Formula

Many students enter ninth grade already famil-
iar with the quadratic formula. Many others 
learn it in ninth grade. Some can even sing 

it! Unfortunately, the formula has little meaning for 
most students. For many, the traditional derivation of 
the formula by completing the square (fig. 1), if it is 
shown to them, is more baffling than illuminating. As 
a teacher, I value student understanding, and early on 
in my career as an algebra teacher, I found this state 
of affairs disturbing. My first response was to have 
students complete the square repeatedly, using num-
bers at first and then the parameters, in the hope that 
this process would lead to understanding. Alas, over 
time I realized that for many if not most of my stu-
dents, additional symbol manipulation did not throw 
additional light on the subject. I needed to come at 
this lack of understanding some other way.

Thus was launched an on-and-off quest that led 
to multiple approaches to this subject and a deeper 
understanding on my part. (Several student activ-
ity sheets about this and closely related material 
are available for downloading at www.picciotto.
org/math-ed/parabolas/.)

Because I came to high school mathematics teach-
ing after ten years or so in elementary education, my 
quest initially led through manipulatives (Picciotto 
1995, pp. 130–44). (See fig. 2.) This approach is lim-
ited to the case where a = 1 and b > 0, but it generalizes 
readily to the traditional derivation and can provide a 
solid foundation for understanding that derivation.

As graphing technology became available, the 
use of functions as a way to think about solving 
equations gained currency. In this view, the solu-
tion to ax2 + bx + c = 0 is the set of x-intercepts of 
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Fig. 1  Derivation of the quadratic formula by completing 

the square
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Let us consider the case where there are real 
roots and a > 0. (The case a < 0 works similarly.) 
The graph looks something like that in figure 3. 
The x-intercepts are on either side of the vertex, at 
a distance d. So we have
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To find d, shift the parabola so that its vertex is at 
the origin (see fig. 4). Its equation is now simply 
y = ax2. The points that were the x-intercepts now 
have the coordinates (±d, –v). It follows that
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Thus, 
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the function y = ax2 + bx + c. I was never convinced 
that all mathematics can be taught by way of func-
tions, but I became intrigued by the possibility of 
using that approach to derive the quadratic for-
mula, and in fact I did find such a derivation (Wah 
and Picciotto 1994, pp. 496–98). Here it is:

If there are roots p and q, the function can be 
written in factored form: 
y = a(x – p)(x – q) = ax2 – a(p + q)x + apq (1)

It follows that the product of the roots is c/a, since 
c = apq and the sum of the roots is –b/a, since b = 
–a(p + q). Let us use this information to find (h, 
v), the coordinates of the vertex. The average of 
the roots, h, is –b/2a. To find v, we substitute this 
expression into the formula, simplify, and get
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There are real roots if a > 0 and v ≤ 0 (a “smiling” 
parabola with vertex on or below the x-axis) or if 
a < 0 and v ≥ 0 (a “frowning” parabola with vertex 
on or above the x-axis). In both cases, there are real 
roots if b2 – 4ac is nonnegative; we have rediscov-
ered the discriminant. 

Fig. 2  Manipulatives can be somewhat helpful to students 

trying to understand how to complete the square

Fig. 3  Graph of a quadratic with two real roots
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Fig. 4  the quadratic from figure 3 shifted so that its vertex 

is at the origin
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A neW PATH: line AnD HYPeRBOlA
Around the same time, I started rethinking first-year 
algebra with the help of my colleagues, especially 
Anita Wah. In line with the trend to look at many 
aspects of mathematics in terms of functions, she 
suggested that we ask students to make a connection 
between the intersections of the graphs of constant 
sums and constant products and the factoring of 
trinomials (Wah and Picciotto 1994, p. 176.) Over 
time, this idea turned into a standard assignment  
(a minireport or poster) for ninth graders at my 
school and was expanded to include the factored 
form of quadratic functions and the factoring of tri-
nomials as represented in Lab Gear (Picciotto 1995). 
(See fig. 5.) Years later, when I was correcting a stu-
dent report on these representations, it occurred to 
me that there must be a way to derive the quadratic 
formula starting with the line and the hyperbola. 
Indeed, there is.

As we saw, equation (1) on the previous page 
yields an expression for the sum of the roots (p + q 
= –b/a). It also gives us an expression for the prod-
uct of the roots: pq = c/a since c = apq. The con-
verse of this is that if we have two numbers p and q 
whose sum is –b/a and whose product is c/a (with 
a ≠ 0), then p and q are the solutions to the qua-
dratic equation ax2 + bx + c = 0. That the converse 
is true can be shown as follows:
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Therefore, aq2 + bq + c = 0, which is what we 
wanted to show. [Editor’s note: Don’t worry. 
We didn’t lose a root. In step (4), we could as eas-
ily have multiplied each term by p instead of q. In 
that case, we would arrive at ap2 + bp + c = 0.] In 
other words, solving the first system of equations 
above is equivalent to solving the quadratic equa-
tion ax2 + bx + c = 0.

If c = 0, the equation can readily be solved by 
factoring, and it is easy to check that the solution 
satisfies the quadratic formula. If c ≠ 0, we will 
solve the system in (2) above with the help of a 
graph. To make the process clearer, we will use the 
equivalent equations x + y = b/a and xy = c/a. 

Fig. 5  three visual representations of y = (x + 2)(x + 8) = x2 + 10x + 16
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In (a), the two intercepts of the parabola are –2 and –8, as can be seen in the factored form of the equation. In (b), a rectangle 
with area x2 + 10x + 16 is shown in the standard representation by using algebra manipulatives, in this case, Lab Gear (Pic-
ciotto 1995). The dimensions of the rectangle are (x + 2) and (x + 8). The pieces are one x2 block, ten x blocks, and sixteen 1 
blocks. Because the area of the yellow rectangle is 16 and the total number of xs that need to be arranged is 10, it follows that 
the two numbers we are looking for multiply to 16 and add up to 10. These numbers are 2 and 8, which can also be seen in (c), 
where the constant product graph of xy = 16 and the constant sum graph of x + y = 10 intersects at (2, 8) and (8, 2).
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Case 1: c/a > 0
In this case, it is possible to have no solution to this sys-
tem (see fig. 6). If there is a solution, we have the situ-
ation illustrated in figure 7. Consider the square with 
opposite vertices at the origin and M and the square 
with opposite vertices at the origin and N. A solution to 
our system exists if the difference of their areas (shaded 
in the figure) is nonnegative. M has coordinates
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because its coordinates satisfy
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N has coordinates
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because its coordinates satisfy
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It follows that the shaded area is
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Because the denominator is always positive, the  
fraction is nonnegative when its numerator, b2 – 4ac, 
is nonnegative. We have re-rediscovered the 
discriminant!

To solve this system, we need to find p and q in 
terms of a, b, and c. Because –b/a is the sum of p 
+ q, –b/2a is the average. In other words, for some 
number d, we have
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More compactly, we have
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and we have solved this system if we can find d. 

To do that, consider figure 8, where d is the side 
of the shaded square. That square has an area equal 
to the area of the larger square (the one with oppo-
site vertices at the origin and M) minus its unshaded 
portion. It is not hard to see that this unshaded area 
equals the area of the rectangle with opposite verti-
ces at the origin and (p, q). But because the hyper-
bola (p, q) is the locus of points whose coordinates 
have a constant product, this rectangle has the same 
area as the square with opposite vertices at the origin 
and N. Therefore, the shaded square has the same 
area as the shaded polygon of figure 6, an area that 
we have already calculated. We conclude that
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Fig. 6  the system may have no solutions in case 1.
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and, therefore, that
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as expected.

Case 2: c/a < 0
In this case, a solution always exists (as can be 
seen in fig. 9). To find the solution, once again 
note that
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with d the side of the shaded square (see fig. 10). 
To find the area of the square, note that the rect-
angular part below the x-axis is congruent to the 
rectangle immediately to its right, which in turn is 
congruent by symmetry across the y = x line to the 
rectangle sitting atop the shaded square. So the area 
of the square equals the area of its part in the first 
quadrant plus the area of the rectangle having oppo-
site vertices at the origin and (q, p). But that rect-
angle has an area equal to that of the square with 
opposite vertices at N and the origin (fig. 11). So
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and the derivation proceeds as above. 

FURTHeR eXPlORATiOnS
What makes our profession endlessly fascinating 
is the interplay between our own exploration of 
mathematics and that of our students. This case is 
emblematic: I was motivated to seek nontraditional 
derivations because of the challenge of teaching for 
understanding. I enjoyed the search for them, deep-
ened my understanding, and was rewarded with 
expanded options on how to present a core part of 
the high school mathematics curriculum. 

My challenge to readers of this column: Can 
you use a similar approach in three dimensions to 
derive Cardano’s formula for the solution of cubic 
equations?

Fig. 10  as before, d is the side of the shaded square.
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Fig. 11  Determining the solution when c/a < 0 

The area of the shaded square to the left of the y-axis is equal to the 
area of the rectangle with opposite vertices at the origin and (q, p), 
since both have area equal to c/a. Consider the upper part of the rect-
angle, with opposite vertices at (q, p) and (0, –b/a). It is congruent 
to its mirror image across the y = x line, which is in turn congruent 
to the shaded rectangle below the x-axis in figure 10. Therefore, the 
shaded areas in figures 10 and 11 are equal.
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Picciotto challenges the reader to extend the 
idea presented here into three dimensions. This is 
a challenge also posed by Marion Walter in a sub-
mission to this department that we hope to publish 
in the future. Her challenge involves elevating a 
familiar plane geometry theorem concerning the 
intersection of chords of a circle to three dimen-
sions. Our invitation to readers is to explore other 
examples of moving a familiar idea in high school 
mathematics from two dimensions to three and 
submit the results to this department.
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Editor’s notes: We especially enjoy examining 
something very familiar from an entirely new per-
spective. Here, to change perspective, the author 
switches variables. The traditional derivation of the 
quadratic formula solves the equation ax2 + bx + c = 
0 (in one variable) by showing how x depends on 
(i.e., is derived from) the values of a, b, and c. If we 
think of the function f(x) = ax2 + bx + c, then those 
same values of x are the zeros of the function. 
Graphing y = f(x), we see these as the x-intercepts. 
But Picciotto presents yet another way to look at 
the solutions to ax2 + bx + c = 0. Using p and q to 
name the two values of x that are the solutions, Pic-
ciotto points out that p and q must satisfy two con-
straints: one that describes their sum p + q and one 
that describes their product pq. These two con-
straints express q as a function of p in two different 
ways: as a system of simultaneous equations, only 
one of which is linear. Where the graphs intersect, 
both constraints are met, and so the coordinates of 
either intersection are the solutions to the original 
equation, ax2 + bx + c = 0. Picciotto shows how 
familiar elements of the quadratic formula can be 
derived from certain features of this graph. The 
change of perspective shows how the two roots of 
the quadratic relate to each other. 
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