Nothing Works! The Art of Teaching Mathematics

Henri Picciotto

henri@mathed.page
www.mathed.page

The Art of Teaching

• Find your profile!
• Example
 • Pasted Graphic
• More examples
 • staying within math vs. making connections
 • over-prepared vs. winging it
 • routine vs. variety
 • enjoyment vs. learning
 • correct vs. incorrect answers
 • intrinsic vs. extrinsic motivation
• Lose your profile!
 • Learn to navigate along these axes

Nothing Works

• Heterogeneous Classes
 • All classes are heterogeneous
• Pedagogy
 • Alliance with the strongest students
 • Support for the weakest
 • The elevator strategy
 • Stop on all floors
 • Something too difficult
 • Something too easy
 • Something "just right"
 • Pacing
• Constant forward motion
 • Eternal review
• Curriculum
 • "Vertical" activities which provide both access and challenge
 • "No threshold, no ceiling"
 • Example: what perimeters are possible for a given graph paper shape?
 • Many more examples on my Web site
• Tools
 • Manipulative and technogical tools
 • Calculator: TI-89
 • Manipulatives: cubes, geoboards, Lab Gear, pattern blocks, ten-sided dice, ...
 • Software: Cabri, Fathom, ...
• Multiple representations of concepts
 • Numeric, symbolic, graphical, geometric, applied, ...
 • To provide an entry point to more students
 • To preview or review concepts
 • To extend exposure
 • To deepen understanding
 • To increase variety
 • To promote engagement
• However...
 • tools are not magic
• Group Work
 • Random groups
 • new groups every 2 weeks
 • Students mostly work independently
 • are expected to help each other
 • If a group does not function well
 • I intervene directly to get the behaviors I want
• If more than one group is stuck
 • I stop them all for a class discussion
 • guide on the side vs. sage on the stage

• Discovery

• Discovery vs. Direct Instruction
 • A false choice: neither works well without the other
 • After exploration, "institutionalization"
 • Make key concepts explicit
 • students may not get there on their own
 • Clarify what is important and worth remembering
 • and thus worth writing down
 • Make connections
 • with other representations
 • with previous knowledge
 • "Nothing transfers"

• Verbalizing
 • Putting things in words is crucial to understanding
 • I encourage talking
 • I require writing

• Class Discussion
 • True Discussion vs. Interactive Lecture
 • Open-ended questions
 • Creating a safe environment
 • No putdowns
 • I praise participation and risk-taking
 • rather than correct answers
 • "Tell your neighbor..."
 • "Can you restate what X said?"
 • Handling wrong answers
 • write down many answers, then discuss
 • poker face vs. telling
 • "Choose someone to help you"
• Making 'mistakes' myself

• Feedback from all
 - votes
 - gestures
 - writing

• Variety
 - Fanfare vs. total silence
 - New problems, not same as on paper
 - Move around the room

• Homework
 - I keep it reasonable
 - most learning happens at school
 - I keep it separate from class work
 - less rushing, more cooperation
 - "Lagging"
 - Pasted Graphic
 - (constant forward motion, eternal review)

• Assessment
 - Purpose
 - To improve teaching
 - Diagnose student understanding and skills
 - Figure out next steps and generally fine-tune the course
 - To improve learning
 - Let students know where they are
 - Provide learning opportunities
 - Also...
 - Prepare students for future assessments (!)
 - Rank students / assign grades
 - Justify the grades

• Variations on the quiz/test routine
 - Participation quiz
 - Occasional take-home assignments
 - Test corrections
 - I keep it manageable
I don't write extensive comments on tests

because...

- When correcting work, I'm working for one student
 - When planning, I'm working for the whole class
 - A true passion for math and learning is not triggered by assessment or grades

Sequencing topics

Overall

- The weight of tradition
 - quadratic formula in Algebra 1,
 - exponential functions in Algebra 2
- Topics can and should move if they are
 - too early (with respect to student's development)
 - too late (more accessible thanks to new approaches)

Within a course

- do important and/or difficult topics early
 - Example: inscribed angles near beginning of Geometry

- separate related topics
 - tangent / sine and cosine
 - exponentials / logarithms
 - sequences / series

Navigating a topic

- concrete to abstract, and back
 - positive whole numbers to rational numbers
- numbers to variables
 - discrete to continuous
 - Example: the Pythagorean theorem on the geoboard
- concepts to vocabulary and notation, and back
 - Example: trig ratios on the ten-centimeter circle
- difficult to easy, and back

Teaching for Understanding

Skills vs. concepts
Another false choice!

In part because of technology,

- speed and accuracy are no longer legitimate priorities for math education
 - understanding is more important than ever

A student who understands a concept can

- explain it
- reverse processes associated with it
 - distribute \leftrightarrow factor
- flexibly use alternative approaches
 - e.g. to equation solving
- successfully handle non-rote assessments
- navigate between multiple representations

Understanding...

- is difficult to encapsulate in a checklist
 - cannot be easily conferred by explanations
 - is difficult to assess
 - is not always valued by students and parents
 - is the most important part of our job

Nothing works...

- ...for every student, every class, every teacher, every day

I am skeptical of claims that some particular approach is the answer

- whether 'traditional' or 'reform'

I don't throw away or rule out any technique

I try to constantly broaden my repertoire

- I am eclectic

The Art of Learning

- Teaching / Learning

- In the end, there is no teaching...
 - ...only learning
 - Thus the goal: self-motivated students
· Our own learning
 · about math
 · about learning
 · is what makes the job interesting in the long haul
 · There is no one way