Transformational Geometry: GeoGebra Files

Introduction to Transformations

These files can be used on a projector or interactive board to introduce geometric transformations. Of course, they can also be used by students.

In all the files, the orange polygon is the pre-image ("orange" / "original".) Using the sliders animates the transformations in order to give an intuitive sense of how they work. Moving the pre-images, and various points can also be illuminating.

Then, files 4-7 can be used to try to guess which isometry was used, as well as to discuss where the center of rotation is, or the reflection line.

File 7 shows an isometry, but it is not one of the previous three. It can be done by combining a reflection with either a translation or a rotation. The standard way to do it is with a reflection followed or preceded by a translation whose vector is parallel to the reflection line. This is called a glide reflection. File 8 shows the two steps.

Composition

These files are intended to provide an environment to explore the composition of transformations. It is not difficult to create more such figures to analyze other cases.

Complex Numbers and Matrices

These files are useful to illustrate more advanced topics. They cannot be used in isolation to teach anything: they are intended to support the teaching of these topics which is done primarily by other means.

complex numbers shows the arithmetic of complex numbers in the plane, visually. Note that while point z can be moved anywhere, point w is confined to a circle centered at the origin — initially the unit circle.

matrices 2 shows how to move a pre-image by way of a 2 by 2 transformation matrix. The coordinates of the vertices of the pre-image appear in the spreadsheet as **pre-x** and **pre-y**. The user can enter values in the matrix by way of the spreadsheet. The image instantly updates as the matrix changes.

matrices 3 works the same way, using a 3 by 3 matrix.

This Web site summarizes many ideas about transformation matrices, and has a great online implementation of their products:

http://www.smccd.net/accounts/hasson/hcoords.html#purpose