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Preface:	Transformational	Proof	Rationale	

	
The	Common	Core	State	Standards	for	Mathematics	(CCSSM)	include	a	fundamental	change	

in	the	geometry	curriculum	in	grades	8	through	10:	geometric	transformations,	not	

congruence	and	similarity	postulates,	are	to	constitute	the	logical	foundation	of	geometry	

at	this	level.	We	propose	an	approach	to	triangle	congruence	and	similarity,	and	more	

generally	to	geometric	proof	where	advantageous,	that	is	compatible	with	this	new	vision.	

	

A	pedagogical	argument	for	this	change:	Congruence	postulates	are	rather	technical	and	far	

from	self-evident	to	a	beginner.	In	fact,	many	teachers	introduce	the	basic	idea	of	

congruence	by	saying	something	like	“If	you	can	superpose	two	figures,	they	are	

congruent.”	That	is	not	very	far	from	saying	“If	you	can	move	one	figure	to	land	exactly	on	

top	of	the	other,	they	are	congruent.”	In	other	words,	basing	congruence	on	

transformations	is	more	intuitive	than	going	in	the	other	direction.	

	

There	are	also	mathematical	arguments	for	the	change.	A	transformational	approach	

1. offers	deeper	links	between	algebra	and	geometry	because	of	its	emphasis	on	functions	
(and	thus	composition	of	functions,	inverse	functions,	fixed	points,	and	so	on.)		

2. highlights	the	natural	way	transformations	connect	with	complex	numbers	and	
matrices,	so	can	immeasurably	enhance	the	teaching	of	these	topics	in	grades	11-12.	

3. will	give	symmetry	a	greater	role	in	school	mathematics,	which	not	only	enhances	
geometric	thinking	and	connects	easily	with	art	and	nature,	but	also	enhances	student	

motivation.	

4. makes	it	possible	to	discuss	the	similarity	of	curves	(such	as	circles	and	parabolas),	
which	could	not	be	done	under	the	traditional	definition	of	similarity	because	it	relies	

on	equal	angles	and	proportional	sides.	

5. paves	the	way	for	transformations	of	graphs	and	transformations	using	coordinates	in	
intermediate	algebra	and	beyond.	

6. blends	more	naturally	with	dynamic	geometry	software,	such	as	the	geometry	
component	of	Desmos	and	GeoGebra.	This	is	because	the	transformations	tools	are	

often	useful	in	constructing	dynamic	special	polygons.	

	

One	of	the	consequences	of	this	change	is	the	need	for	some	clarity	on	how	this	new	vision	

affects	the	logical	structure	of	high	school	geometry.	Our	development	so	far	attempts	to	fill	

that	need	by	starting	with	a	new	set	of	definitions	and	assumptions,	then	using	these	to	

prove	the	usual	(and	some	less	usual)	theorems.	When	we	complete	this	development,	

meant	solely	for	teachers	and	curriculum	developers,	we	hope	to	begin	work	on	materials	

for	students.	If	you	use	this	document	as	a	guide	for	work	with	students,	or	if	you	have	

comments	or	questions,	please	get	in	touch:	henri@MathEducation.page.	

	

Beyond	pedagogical	and	mathematical	considerations,	transformations	are	an	integral	part	

of	everyday	life.	Flips	and	turns	are	built-in	tools	when	drawing	shapes	on	a	computer.	

Enlargement	or	reduction	on	a	computer	screen	or	a	copier	is	a	dilation	with	the	scale	

factor	shown	as	a	percent.	When	we	see	a	photograph,	we	know	that	the	people	depicted	in	

it	are	not	really	2	inches	high	–	their	images	have	been	dilated	using	a	positive	scale	factor	
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it	are	not	really	2	inches	high	–	their	images	have	been	dilated	using	a	positive	scale	factor	

less	than	1.	Images	on	a	movie	screen	have	been	dilated	using	a	scale	factor	greater	than	1.	

Flat	maps	are	transformations	of	the	surface	of	a	sphere	to	a	plane.	As	we	look	around	us,	

more	and	more	examples	of	transformations	become	apparent.	

	

Note	on	Geometric	Construction	

	

The	essential	mathematical	concept	underlying	geometric	construction	is	not	the	use	of	
straightedge	and	compass.	Interesting	versions	of	construction	have	been	developed	for	

straightedge	and	the	collapsing	compass,	and	for	the	compass	alone,	not	to	mention	for	

pedagogical	tools	such	as	patty	paper,	Plexiglas	mirrors,	and	of	course	interactive	geometry	

software.		

	

The	essential	concept	underlying	geometric	construction	is	that	of	intersecting	loci.	The	
locus	of	a	point	is	the	set	of	all	possible	locations	of	that	point,	given	the	point’s	properties.	
The	locus	can	be	a	line,	a	circle,	or	some	other	curve.	If	one	knows	two	loci	for	a	certain	

point,	the	point	must	lie	at	their	intersection.	In	other	words,	given	a	figure,	an	additional	

point	can	be	added	to	it	in	a	mathematically	rigorous	way	by	knowing	the	locus	(location)	

of	the	point	in	two	different	ways.	Geometric	construction	is	the	challenge	of	finding	such	

points	and,	in	some	cases,	using	them	to	define	additional	parts	of	the	figure.	

	

In	the	sequence	we	propose,	arguments	based	on	what	we	call	the	construction	postulates	
(see	Chapter	1)	are	needed	for	many	proofs.	One	pedagogical	consequence	of	this	is	that	

construction	challenges	should	play	an	important	role	in	teaching	geometry.	We	favor	an	

introduction	using	compass,	straightedge,	and	patty	paper,	soon	followed	by	work	with	

interactive	geometry	software.	

	

Note	on	Common	Core	compliance	

	

The	Common	Core	State	Standards	for	Mathematics	only	require	using	transformations	to	

justify	the	triangle	congruence	and	similarity	criteria.	Beyond	that,	they	do	not	specify	

whether	proofs	can	or	should	use	transformational	approaches.	The	most	traditional	

interpretation	of	the	Standards	would	revert	to	traditional	proofs	based	on	congruent	and	

similar	triangles.	The	approach	we	take	in	this	document	is	to	use	a	transformational	

approach	whenever	possible.	Classroom	teachers	and	curriculum	developers	can	situate	

themselves	anywhere	in	this	range.	The	best	strategy	is	probably	one	that	combines	

traditional	and	transformational	approaches	to	proof	in	different	cases,	and	also	compares	

them	in	some	instances.	Note	that	we	did	not	include	theorems	for	which	we	could	not	find	

a	suitable	transformational	alternative	to	the	traditional	proof.	

	

More	on	Transformational	Geometry	

	

See	http://www.mathedpage.org/transformations	for	related	articles,	and	some	curricular	

materials.	
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Chapter	1:	Isometries	and	Congruence	
	
Basic	Transformational	Definitions	

Transformation	of	the	Plane:	A	one-to-one	function	whose	domain	and	range	are	the	
entire	plane.	(It	is	understood	that	we	are	working	in	the	2-D	plane.)	
Isometry	(or	rigid	motion):	A	transformation	of	the	plane	that	preserves	distance	and	
angles.		
Symmetry	of	a	Figure:	An	isometry	for	which	the	figure,	taken	as	a	whole,	is	invariant.	
Individual	points	in	the	figure	need	not	be	fixed.	
Congruence:	Two	figures	are	congruent	if	one	can	be	superposed	on	the	other	by	a	
sequence	of	isometries.	(Or:	two	figures	are	congruent	if	one	is	the	image	of	the	other	
under	a	composition	of	isometries.)	
Note:	Many	traditional	definitions	are	unchanged.	For	example,	the	perpendicular	
bisector	of	a	segment	is	the	line	perpendicular	to	the	segment	through	its	midpoint.	

	
New	Definition	of	Parallel	

It	will	simplify	the	statement	of	some	theorems	if	we	call	lines	that	coincide	parallel.	
This	is	especially	useful	for	theorems	involving	translation.	Therefore,	we	will	say	that	
two	lines	are	parallel	if	they	do	not	intersect	or	coincide.	We	will	call	traditional	parallel	
lines	“distinct	parallel	lines.”	Segments	or	rays	are	parallel	if	the	lines	that	contain	them	
are	parallel.	Parallel	rays	can	point	in	the	same	or	opposite	directions.	
	

Notation	
We	use	the	customary	symbols	for	parallel,	perpendicular,	angle,	and	triangle,	but	we	
generally	do	not	use	symbols	for	segment,	ray,	or	line.	For	example,	we	say	segment	AB	
or	line	CD.	EF	by	itself	can	be	any	of	these	if	the	context	makes	it	clear.	As	is	customary,	
EF	can	also	be	the	distance	between	E	and	F,	which	is	also	the	length	of	segment	EF.	We	
sometimes	use	an	arrow	over	one	or	more	letters	for	a	vector,	but	context	usually	
makes	it	clear.	
In	general,	we	refer	to	the	image	of	point	P	under	a	transformation	as	P',	and	likewise	
for	lines	and	other	figures.	
	

Definitions	of	Basic	Isometries	
Reflection:	A	reflection	in	a	line	b	maps	any	point	on	b	to	itself,	and	any	other	point	P	to	
a	point	P'	so	that	b	is	the	perpendicular	bisector	of	segment	PP'.	
Rotation:	Given	a	point	O	and	a	directed	angle	θ,	the	image	of	a	point	P	≠	O	under	a	
rotation	with	center	O	and	angle	θ	is	a	point	P'	on	the	circle	centered	at	O	with	radius	
OP,	such	that	∠POP'=θ.	The	image	of	O	is	O.	(θ	is	positive	for	a	counterclockwise	
rotation,	negative	for	clockwise.)	A	180°	rotation	is	also	known	as	a	half-turn	or	
reflection	in	a	point	(the	center	of	rotation).	
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Vector	An	arrow	specifying	distance	and	direction	for	which	position	doesn't	matter.	
Two	representatives	of	the	same	vector	will	be	parallel,	have	the	same	length,	and	point	
in	the	same	direction.	! = !	means	they	are	two	representatives	of	the	same	vector.	
Parallel	Vectors:	Vectors	whose	representatives	lie	on	parallel	lines.	They	do	not	need	
to	have	the	same	length.	
Opposite	Vectors:	Two	equal-length	parallel	vectors	pointing	in	opposite	directions.	−!	
denotes	the	vector	opposite	!.	
Translation:	Given	a	vector	!,	the	image	of	a	point	P	under	a	translation	by	!,	is	a	point	
P'	such	that	!!′ = !.	

	
Postulates	

The	following	five	assumptions	are	sufficient	for	the	mathematically	experienced,	
though	a	truly	rigorous	development	would	include	the	protractor	postulate	and	others	
from	Hilbert's	set.	When	working	with	students	or	developing	curriculum,	many	of	the	
basic	theorems	proved	below	can	be	added	to	the	set	of	assumptions	because	many	
students	will	think	they	are	obvious.	
1. The	parallel	postulate:	Through	a	point	outside	a	given	line,	one	and	only	one	line	

can	be	drawn	parallel	to	the	given	line.	
Note:	The	parallel	postulate	has	many	equivalent	forms.	This	one	is	generally	
credited	to	Playfair.	See	https://en.wikipedia.org/wiki/Parallel_postulate.	

2. Reflection	preserves	distance	and	angle	measure.	
And	the	construction	postulates:	
3. Two	distinct	lines	meet	in	at	most	one	point.	
4. A	circle	and	a	line	meet	in	at	most	two	points.	
5. Two	distinct	circles	meet	in	at	most	two	points.	

	
Pedagogical	Note	

In	order	to	limit	ourselves	to	a	minimum	number	of	postulates,	we	only	assume	that	
reflection	is	an	isometry.	To	ensure	the	logical	progression	of	this	presentation,	we	
prove	that	rotations	and	translations	are	isometries	further	down	(see	“Two	
Reflections”	below).	However,	in	the	classroom	it	may	be	preferable	to	present	all	three	
as	isometries	early	on,	and	allow	students	to	find	transformational	proofs	of	Theorems	
9-12	that	rely	on	one	or	more	of	the	three	basic	isometries.	This	can	be	done,	say,	using	
interactive	geometry	software.	
	
Some	theorems	in	this	chapter	are	probably	obvious	to	your	students.	Supplying	formal	
proofs	for	them	will	likely	be	counterproductive,	as	students	find	it	incomprehensible	
that	such	results	require	proof.	This	is	true	whether	the	proof	is	simple	or	complicated.	
We	have	found	it	more	effective	to	reserve	formal	proof	for	less	obvious	theorems,	such	
as	those	in	subsequent	chapters.	
	
In	this	document,	we	use	an	asterisk	(*)	to	mark	theorems	for	which	we	discourage	a	
formal	discussion.	For	completeness	and	logical	consistency,	we	offer	proofs	for	these	
theorems	below,	but	in	the	classroom,	you	can	probably	either	assume	those	results	or	
discuss	them	informally.	Admittedly,	this	is	a	judgment	call	in	each	case.		
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Requiring	a	minimal	list	of	axioms	and	proving	seemingly	obvious	results	does	not	
constitute	an	accessible	introduction	to	proof.	In	fact,	it	is	a	rather	sophisticated	stance.	
Should	you	have	an	exceptional	student	who	demands	a	rigorous	treatment	with	a	
minimum	number	of	assumptions,	refer	them	to	this	document.		

	
Basic	Theorems	

1. *	If	A'	=	B	under	a	reflection,	then	B'	=	A.	
Proof:	If	l	is	the	reflection	line,	then	l	is	the	perpendicular	bisector	of	segment	AB,	
which	is	the	same	as	segment	BA.	

2. *	Reflection	preserves	collinearity	and	betweenness.	
Proof:	A,	B,	and	C	are	collinear	with	B	between	A	and	C	if	and	only	if	AB	+	BC	=	AC.	
Since	reflection	preserves	distance,	A'B'	+	B'C'	=	A'C'.	

3. *	If	A	→A'	and	B	→B'	under	a	reflection,	segment	AB	must	map	onto	segment	A'B'.	
Proof:	Because	reflection	preserves	collinearity	and	betweenness,	segment	AB	must	
map	onto	part	or	all	of	segment	A'B'.	Reflect	any	point	P	on	segment	A'B'	under	the	
same	reflection.	P'	→P	by	Theorem	1.	So,	any	point	on	segment	A'B'	is	an	image	point	
and	segment	AB	reflects	onto	the	entire	segment	A'B'.	

4. *	Reflections	map	rays	onto	to	rays	and	lines	onto	lines.	
Proof:	The	argument	of	Theorem	3	applies.	

5. *	Congruent	segments	have	equal	length.	Congruent	angles	have	equal	measure.	
Proof:	Isometries	preserve	segment	length	and	angle	measure.	

6. *	The	corresponding	sides	and	angles	of	congruent	polygons	have	equal	measure.	
Proof:	Isometries	preserve	segment	length	and	angle	measure.	(This	is	true	for	
reflection	by	Postulate	2.	It	will	be	proved	for	rotation	and	translation	later	in	this	
document.)	

7. *	There	is	a	reflection	that	maps	any	given	point	P	onto	any	given	point	Q.	
Proof:	If	P	=	Q,	reflection	in	any	line	through	P	will	do	the	job.	If	not,	Q	is	the	
reflection	of	P	across	the	perpendicular	bisector	of	segment	PQ.	
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Triangle	Congruence	
8. A	point	P	is	equidistant	from	two	points	A	and	B	if	and	only	if	it	lies	on	their	

perpendicular	bisector.	
Proof:	If	P	is	on	the	perpendicular	bisector	b	of	AB,	
then	by	the	definition	of	reflection,	A	and	B	are	
images	of	each	other	and	P	is	its	own	image	in	a	
reflection	across	b.	So,	PA	=	PB	since	reflections	
preserve	distance.	
Conversely,	if	PA	=	PB,	we	must	show	that	P	is	on	the	
perpendicular	bisector	of	AB.	Let	M	be	the	midpoint	
of	AB.	Reflect	A	across	PM.	Call	the	image	A'.	
Since	reflections	preserve	distance,	A'	must	be	on	the	
circle	centered	at	P,	with	radius	PA,	and	on	the	circle	
centered	at	M,	with	radius	MA.	Because	PA	=	PB	and	M	is	the	midpoint	of	AB,	B	must	
be	on	both	circles	as	well.		
A'	≠	A	because	A	is	not	on	the	reflection	line,	so	A'	=	B,	the	other	intersection	point	of	
the	circles.	Since	PM	is	the	perpendicular	bisector	of	AA',	it	is	the	perpendicular	
bisector	of	AB.	We	conclude	that	P	is	indeed	on	the	perpendicular	bisector	of	AB.	(An	
indirect	proof	is	also	possible	if	one	assumes	the	triangle	inequality.)	

9. If	two	segments	AB	and	CD	have	equal	length,	then	one	is	
the	image	of	the	other,	with	C	the	image	of	A	and	D	the	
image	of	B,	under	either	one	or	two	reflections.	
Proof:	Given	AB	=	CD,	by	Theorem	7,	we	can	reflect	segment	
AB	so	that	C	is	the	image	of	A.	Let	B'	be	the	image	of	B.	If	
B’=D,	that	single	reflection	will	do.	If	not,	since	reflections	
preserve	distance,	we	have	CB'=	AB	=	CD.	By	Theorem	8,	C	
is	on	the	perpendicular	bisector	b	of	B'D.	Therefore,	a	
second	reflection	of	CB'	in	b	yields	CD.	

10. Equal	length	segments	are	congruent.	If	we	combine	this	
with	Theorem	5,	we	have:	Segments	are	congruent	if	and	only	if	they	have	equal	
length.	
Proof:	This	is	an	immediate	corollary	of	Theorem	9.	
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11. Congruence	Criteria	for	Triangles	
a. SSS	Congruence:	If	all	sides	of	one	triangle	are	congruent,	respectively,	to	all	

sides	of	another,	then	the	triangles	are	congruent.	
Proof:	We	are	given	∆ABC	and	∆DEF	
with	AB	=	DE,	BC	=	EF,	and	AC	=	DF.	
By	Theorem	9,	we	can	superpose	AB	
onto	DE	in	one	or	two	reflections.	
Because	reflections	preserve	
distance,	C'	(the	image	of	C)	must	be	
at	the	intersection	of	two	circles:	one	
centered	at	D,	with	radius	DF,	the	
other	centered	at	E,	with	radius	EF.	F,	
of	course,	is	on	both	circles.	If	C'	=	F,	
we’re	done.	If	not,	C'	must	be	at	the	
other	intersection.	But	by	Theorem	8,	DE	must	be	the	perpendicular	bisector	
of	FC',	so	a	reflection	across	DE	superposes	∆ABC	onto	∆DEF.	

b. SAS	Congruence:	If	two	sides	of	one	triangle	are	congruent	to	two	sides	of	
another,	and	if	the	included	angles	have	equal	measure,	then	the	triangles	are	
congruent.	
Proof:	We	are	given	∆ABC	and	∆DEF,	with		
AB	=	DE,	BC	=	EF,	and	∠B	=	∠E.	By	Theorem	9,	
we	can	superpose	AB	onto	DE	in	one	or	two	
reflections.	If	C'	=	F,	we’re	done.	If	not,	reflect	F	
across	DE	with	image	F'.	Because	reflections	
preserve	distance	and	angle	measure,	C'	must	lie	
on	the	ray	DF'	and	on	the	circle	centered	at	D	
with	radius	DF.	Therefore	C'	=	F',	so	a	reflection	
across	DE	superposes	∆ABC	onto	∆DEF.	

c. ASA	Congruence:	If	two	angles	of	one	triangle	
are	congruent	to	two	angles	of	another,	and	if	the	sides	common	to	these	
angles	in	each	triangle	are	congruent,	then	the	triangles	are	congruent.	
Proof:	We	are	given	∆ABC	and	∆DEF	with		
AB	=	DE,	∠A	=	∠D,	and	∠B	=	∠E.	By	Theorem	9,	
we	can	superpose	AB	onto	DE	in	one	or	two	
reflections.	If	C'	=	F,	we’re	done.	If	not,	reflect	F	
across	DE	with	image	F'.	Since	reflections	
preserves	angle	measure,	C'	must	be	on		
ray	DF'	and	on	ray	EF'.	It	follows	that	C'	=	F',	so	
a	reflection	across	DE	superposes	∆ABC	onto	
∆DEF.	
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12. HL	Congruence	Criterion	for	Right	Triangles:	If	the	hypotenuse	and	one	leg	of	one	
right	triangle	are	congruent	to	the	hypotenuse	and	one	leg	of	another,	then	the	right	
triangles	are	congruent.	
Proof:	We	are	given	∆ABC	and	∆DEF	
with	hypotenuse	AC	=	hypotenuse	DF	
and	leg	AB	=	leg	DE.	By	Theorem	9,	
we	can	superpose	AB	onto	DE	in	one	
or	two	reflections.	Because	∠ABC	is	a	
right	angle	and	reflection	preserves	
angle	measure,	B'C'	⊥	A'B'.	But	∠DEF	
is	a	right	angle	also	and	reflection	
preserves	segment	length,	so	C'	lies	
on	the	line	through	E	perpendicular	
to	DE	and	on	the	circle	with	center	D	and	radius	DF.	If	C'	=	F,	we’re	done.	If	not,	
reflect	F	across	DE	with	image	F'.	C'	must	lie	on	ray	EF'	and	on	the	circle	with	center	
D	and	radius	DF.	It	follows	that	C'	=	F',	so	a	reflection	across	DE	superposes	∆ABC	
onto	∆DEF.	

13. If	two	triangles	are	congruent,	one	can	be	superposed	on	the	other	by	a	sequence	of	
at	most	three	reflections.	
Proof:	The	proofs	in	Theorem	11	and	12	show	this.	

14. *	Angles	with	equal	measure	are	congruent.	If	we	combine	this	with	Theorem	5,	we	
have	:	Angles	are	congruent	if	and	only	if	they	have	equal	measure	
Proof:	Given	∠A	=	∠D,	construct	∆ABC	and	∆DEF	with	AB	=	AC	=	DE	=	DF.		
∆ABC	≅	∆DEF	by	SAS,	so	a	sequence	of	reflections	superimposes	∆ABC	onto	∆DEF.	
This	implies	that	∠A	maps	onto	∠D.	

	
Two	Reflections	

15. *	If	a	line	l	is	perpendicular	to	one	of	two	distinct	parallel	lines	e	and	f,	it	is	
perpendicular	to	the	other.	
Proof:	In	the	diagram,	l	is	
perpendicular	to	e	at	P	and	f	
intersects	l	at	Q.	Assume	that	f	is	not	
perpendicular	to	l.	Reflect	e	and	f	in	
l.	Because	Q	is	on	l,	Q'	=	Q,	and	
because	e	is	perpendicular	to	l,	e'	=	e.	
If	f	were	not	perpendicular	to	l,	f	'	≠	f.	
f	'	can't	also	be	parallel	to	e,	because	
that	would	contradict	the	parallel	
postulate.	So,	e	and	f	'	intersect	at	a	
point	R.	Reflecting	again	in	l	would	show	that	e	and	f	intersect	at	R'.	But	this	is	
impossible,	because	e	and	f	are	parallel.	Therefore,	our	assumption	is	incorrect,	and	
f	must	be	perpendicular	to	l.	

	 	



March	2018	 ©	Lew	Douglas	and	Henri	Picciotto	

www.MathEducationPage.org	 	 Chapter	1,	p.	7	

16. The	composition	of	two	reflections	in	
parallel	lines	is	a	translation.	The	
translation	vector	is	perpendicular	to	the	
lines,	points	from	the	first	line	to	the	second,	
and	has	length	twice	the	distance	between	
the	lines.	This	implies	that	any	translation	
can	be	decomposed	into	two	reflections.	
Proof:	In	the	diagram,	the	reflection	lines	e	
and	f	are	parallel.	Assume	point	A	is	on	the	
opposite	side	of	e	from	f	as	shown.	A	reflects	
to	A'	in	e;	A'	reflects	to	A"	in	f.	By	the	
definition	of	reflection,	AA'⊥e,	A'A"⊥f,	and	
the	equal	segments	are	labeled	x	and	y.	
Since	line	j,	which	contains	A	and	A',	is	perpendicular	to	e,	it	is	also	perpendicular	to	

f	by	Theorem	15.	So,	A,	A',	and	A"	are	
collinear.	Therefore,	A	translates	to	
A"	by	the	vector	shown,	which	is	
perpendicular	to	e	and	f.	Its	length,	
2(x	+	y),	is	twice	the	distance	x	+	y	
between	e	and	f.	
If	A	is	between	e	and	f,	the	diagram	
looks	like	this:		
As	before,	the	distance	between	A	
and	e	is	x	and	the	distance	between	
A'	and	f	is	y.	Now	the	distance	
between	e	and	f	is	y	–	x	and	the	

distance	between	A	and	A"	is		
2y	–	2x,	but	the	argument	is	
essentially	the	same.	
This	argument	also	applies	in	the	
third	case,	where	A	is	on	the	
opposite	side	of	f	from	e.	The	
diagram	for	this	case	is	below.	 	
						
For	a	dynamic	view	of	this	with	a	
quadrilateral	as	pre-image,	see	
Theorem	3	on	this	web	page:	
http://www.mathedpage.org/transformations/isometries/four/index.html#two	.	
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17. The	composition	of	two	reflections	in	intersecting	lines	is	a	rotation	around	their	
point	of	intersection.	The	angle	of	rotation	is	twice	the	directed	angle	between	the	
lines	going	from	the	first	reflection	line	to	the	second	(either	clockwise	or	
counterclockwise).	This	implies	that	any	rotation	can	be	decomposed	into	two	
reflections.	
Proof:	The	argument	is	like	Theorem	16.	
In	the	diagram,	the	reflection	lines	e	and	f	
intersect	at	O	and	the	resulting	rotation	is	
counterclockwise.	A	reflects	to	A'	in	e;	A'	
reflects	to	A"	in	f.	Since	reflection	
preserves	angles	and	the	reflection	line	is	
fixed,	the	equal	angles	are	labeled	x	and	y.	
By	the	definition	of	rotation,	OA	=	OA'	=	
OA".	One	angle	between	e	and	f	is	x	+	y,	
and	the	counterclockwise	rotation	angle	
from	A	to	A"	is	2x	+	2y	=	2(x	+	y),	twice	the	
angle	between	the	lines.	The	other	angle	
between	e	and	f	is	180	–	(x	+	y)	and	the	
clockwise	rotation	angle	is	
360	–	2x	–	2y	=	360	–	2(x	+	y)	=	2[180	–	(x	+	y)],	also	twice	the	angle	between	the	
lines.	
For	a	dynamic	view	of	this	with	a	quadrilateral	as	pre-image,	see	Theorem	4	on	this	
web	page:	
http://www.mathedpage.org/transformations/isometries/four/index.html#two	.	

18. *	Rotation,	and	translation	preserve	segment	length,	angle	measure.	collinearity,	and	
betweenness.	
Proof:	We	assumed	that	reflection	preserves	segment	length	and	angle	measure.	
Theorem	2	shows	that	reflection	preserves	collinearity	and	betweenness.	Since	
rotation	and	translation	are	compositions	of	two	reflections,	they	preserve	these	
also.	

19. *	If	A	→A'	and	B	→B'	under	a	rotation	or	translation,	segment	AB	must	map	onto	
segment	A'B'.	
Proof:	Both	rotation	and	translation	can	be	decomposed	into	two	reflections.	Since	
the	theorem	is	true	for	reflections	(Theorem	3),	it	must	be	true	for	rotation	and	
translation.	

20. *	Reflections,	rotations,	and	translations	map	rays	onto	rays	and	lines	onto	lines.	
Proof:	Both	rotation	and	translation	can	be	decomposed	into	two	reflections.	Since	
the	theorem	is	true	for	reflections	(Theorem	4),	it	must	be	true	for	rotation	and	
translation.	

21. *	Given	two	intersecting	lines,	there	are	two	reflections	mapping	one	to	the	other.	
Proof:	The	lines	that	bisect	each	of	two	adjacent	angles	formed	at	the	intersection	
point	are	the	lines	of	reflection	because	reflection	preserves	angle	measure.	
Note:	The	related	theorem	for	distinct	parallel	lines	is	Theorem	10	of	Chapter	3.	

	
Half-Turns,	Vertical	Angles,	Transversals,	and	Translations	



March	2018	 ©	Lew	Douglas	and	Henri	Picciotto	

www.MathEducationPage.org	 	 Chapter	1,	p.	9	

22. *	If	A'	=	B	under	a	half-turn,	then	B'	=	A.	
Proof:	180˚	rotation	clockwise	is	equivalent	to	180˚	rotation	counter-clockwise.	So,	if	
a	half-turn	takes	A	to	B,	its	inverse	(itself)	will	take	B	to	A.	

23. *	The	image	of	segment	AB	under	a	half-turn	around	its	midpoint	is	the	segment	BA.	
That	is,	A'	=	B	and	B'	=	A.	
Proof:	If	M	is	the	midpoint	of	segment	AB,	∠AMB	=	180˚	and	MA	=	MB.	By	the	
definition	of	rotation,	A'	=	B	and	B'	=	A	under	a	half-turn	around	M.	Since	the	image	
of	a	segment	is	a	segment,	AB	is	invariant	under	the	half-turn.	

24. *	A	line	is	its	own	image	under	a	half-turn	around	a	point	on	the	line.	
Proof:	If	O	is	the	center	of	rotation	and	P	is	a	point	on	the	line,	∠POP'	=	180˚	under	
the	half-turn	around	O.	Therefore,	P'	is	also	on	the	line.	Under	the	half-turn,	(P')'	=	P,	
so	every	point	on	the	line	is	the	image	of	another	point.	

25. *	The	image	of	a	line	under	a	half-turn	is	parallel	to	the	pre-image.	
Proof:	Theorem	23	proves	this	if	the	
center	of	rotation	is	on	the	line,	so	
suppose	that	it	isn’t.	f	'	is	the	image	of	f	
and	A'	is	the	image	of	A	under	a	half-
turn	H	around	P.	By	Theorem	21,	H	
will	take	A'	back	to	A.	Since	this	is	true	
for	all	points	A	on	line	f,	H	will	take	f	'	
back	to	f.	Suppose		
f	'	is	not	parallel	to	f,	so	that	f	'	and	f	
intersect	at	Q.	Q	must	be	distinct	from	
P,	because	it	lies	on	f.	Let	Q'	=	H(Q).	Q'	
is	an	intersection	point	of	f	and	f	'	that	
is	distinct	from	Q.	Since	f	'	and	f	
intersect	in	two	distinct	points,	f	'	=	f.	
But	if	A'	is	on	f,	then	P	is	also,	
contradicting	our	assumption.	

26. *	When	two	lines	intersect,	the	vertical	angles	are	equal.	
Proof:	Rotate	angle	α	180˚	around	P.	α'	=	α	because	
rotation	preserves	angles.	But	lines	f	and	g	are	their	
own	images	by	Theorem	23.	So	α'	=	β	and	therefore		
α	=	β.	
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27. *	If	two	distinct	lines	are	cut	by	a	transversal,	they	are	parallel	if	and	only	if	the	
alternate	interior	angles	are	equal.	
Proof:	Suppose	the	line	we	called	f	'	is	
parallel	to	f	and	the	transversal	intersects	f	
at	A	and	f	'	at	a	point	we'll	call	A'.	Let	P	be	the	
midpoint	of	segment	AA'.	Let	H	be	the	half-
turn	around	point	P.	By	Theorem	22,	A'	is	
the	image	of	A	under	H.	By	Theorem	24,	f	'	is	
the	image	of	f.	Since	P	is	fixed	under	H,	
segment	PA'	is	the	image	of	segment	PA.	
Therefore,	angle	α'	is	the	image	of	angle	α,	
and	because	rotation	preserves	angle	
measure,	α'	=	α.	
Conversely,	suppose	in	the	second	diagram	
that	that	f	and	g	are	two	distinct	lines,	and	
that	P	is	the	midpoint	of	transversal	
segment	AA'.	Furthermore,	suppose	that	the	
alternate	interior	angles	labeled	α	and	α'	are	
equal.	Since	rotation	preserves	angles	and	
segment	PA'	is	one	side	of	H(α),	H(f)	=	g.	By	
Theorem	24,	g	is	parallel	to	f.	
	
	
	
	

28. *	If	two	distinct	lines	are	cut	by	a	transversal,	they	are	parallel	if	and	only	if	the	
corresponding	angles	are	equal.	
Proof:	By	Theorem	26,	f	'	is	parallel	to	f	if	and	only	if	α'	=	α.	By	Theorem	25,	β	=	α'.	
Therefore,	f	'	is	parallel	to	f	if	and	only	if	β	=	α.	
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29. *	The	composition	of	translations	is	commutative.	
Notation:	Tu(B)	is	the	image	of	B	under	a	translation	with	vector	u.	Tu(!")	is	the	
image	of	line	AB	under	a	translation	with	vector	u,	and	similarly	with	segments	and	
vectors.	
Proof:	Let	u	and	v	be	the	two	translation	vectors.	If	the	vectors	are	parallel,	take	
representatives	on	the	same	line.	Mark	this	line	with	numbers	to	make	it	a	number	
line.	The	result	follows	from	commutativity	of	addition.	
If	they	are	not	parallel,	let	Tu(A)	=	A',	Tu(B)	=	B'	and	Tv(A)	=	B.	We	need	to	show	that	
Tv(A')	=	B'.	
Let	Tv(A')	=	C.	By	the	definition	of	vector,	
A'C	=	AB	(the	length	of	v).		
A'B'	=	AB	also,	since	A'B'	=	Tu(AB)	and	
translation	preserves	distance.	Since		
A'B'	=	A'C,	both	B'	and	C	are	on	a	circle	
centered	at	A',	with	radius	AB.	
Likewise,	BB'	=	AA'	(the	length	of	u),	and		
BC	=	AA'	since	BC	=	Tv(AA').	Therefore,	both	
B'	and	C	are	on	a	circle	centered	at	B,	with	
radius	AA'.		
Thus,	B'	and	C	are	both	at	the	intersection	
of	the	two	circles.	Let	m	be	the	line	through	
A	and	B.	Then	m'	=	Tu(m)	is	the	line	through	A'	and	B'.	B'	must	be	on	the	same	side	of	
m	as	A',	because	the	other	intersection	is	T-u(B).	C	must	be	on	the	same	side	of	m	as	
A'	because	Tv(A')	=	C	and	v	is	the	direction	of	m.	Therefore	B'	and	C	are	the	same	
intersection	point,	so	Tu(Tv(A)	=	Tu(B)	=	B'	and	Tv(Tu(A)	=	Tv(A')	=	B'.	
Pedagogical	note:	It	is	essential	to	make	clear	that	in	general,	composition	is	not	
commutative.	For	example,	students	could	experiment	on	interactive	geometry	
software.		

30. *	The	translation	image	of	a	line	is	parallel	to	the	line.	
Proof:	
Part	1:	The	translation	image	of	a	line	is	the	line	
itself	if	the	vector	is	parallel	to	the	line.	
Proof:	Let	! = !"	be	a	representative	of	the	
translation	vector	with	A	on	line	f.	If	P	is	an	
arbitrary	point	on	line	f,	!!′ = !	by	the	definition	
of	translation.	P'	lies	on	f	because	!	moves	points	
in	the	direction	of	the	line.	To	locate	the	pre-image	
of	any	point	on	the	line	under	!,	apply	−!	to	it.	So,	the	image	of	the	line	is	the	entire	
line.	
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Part	2:	The	translation	image	of	a	line	is	a	distinct	line	parallel	to	its	pre-image	if	the	
vector	is	not	parallel	to	the	line.	
Proof:	We	can	use	the	same	diagram	and	
setup	as	Theorem	28.	Consider	a	line	m	and	a	
vector	u	not	parallel	to	m.	Choose	two	
arbitrary	points	A	and	B	on	m.	Let	Tu(A)	=	A',	
Tu(B)	=	B',	and	!" = v.	We	have	already	
shown	that	Tv(A')	=	B',	and	u	does	not	have	the	
same	direction	as	v,	so	the	two	
representations	!"	and	!"	of	v	are	parallel	
and	not	collinear.	We	have	shown	that	the	
image	of	any	segment	on	m	is	a	parallel	
segment	on	m'.	Therefore,	m'	=	Tu(m)	is	
parallel	to	m.	

31. *	Any	representative	of	a	vector	can	be	superimposed	on	any	other	by	a	translation.	
Proof:	If	u	and	v	are	two	representatives	of	the	same	vector,	translate	the	initial	
point	of	u	to	the	initial	point	of	v	by	translation	T.	Since	u	and	v	are	parallel,	since	
translation	maps	any	line	into	a	parallel	line,	and	since	u	and	v	have	the	same	length	
and	point	in	the	same	direction,	T(u)	=	v.	

32. *	If	two	distinct	lines	are	cut	by	a	transversal,	an	angle	on	one	line	is	a	translation	
image	of	an	angle	on	the	other	if	and	only	if	the	lines	are	parallel.	
a)	If	two	parallel	lines	are	cut	by	a	transversal,	an	angle	on	one	parallel	is	the	
translation	image	of	an	angle	on	the	other.	
Proof:	Given	distinct	parallel	lines	m	and	n	
and	transversal	t	shown	in	the	diagram,	
translate	m	by	vector	!".	m'	contains	Q	and	
is	parallel	to	m	by	Theorem	29,	Part	2.	By	
the	parallel	postulate,	m'	=	n.	t'	=	t	by	
Theorem	29,	Part	1.	Therefore	α'	=	β.	Since	
translation	preserves	angles,	α	=	β.	
b)	If	two	lines	are	cut	by	a	transversal,	and	
if	an	angle	on	one	line	is	the	translation	
image	of	an	angle	on	the	other,	then	the	
lines	are	parallel.	
Proof:	Suppose	angle	β	is	a	translation	
image	of	angle	α,	so	that	α'	=	β.	Because	
intersection	must	map	to	intersection,	!"	is	the	translation	vector	and	t	is	a	
transversal	because	it	is	common	to	both	angles.	Since	α'	=	β,	m'	=	n.	By	Theorem	29,	
Part	2,	m	||	n.	
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Sum	of	Angles	
33. The	sum	of	the	angles	of	a	triangle	is	180˚.	An	exterior	angle	of	a	triangle	is	equal	to	

the	sum	of	the	remote	interior	angles.	Therefore	it	is	greater	than	either	one.	
Proof:	Rotate	ΔABC	180˚	around	M,	
the	midpoint	of	segment	BC.	By	
Theorem	22,	B'	=	C	and	C'	=	B.	β'	=	β	
because	rotation	preserves	angles	
and	BA'	||	AC	by	Theorem	26.	Now	
translate	ΔABC	by	vector	!".	A,	B	and	
B'	are	collinear	by	Theorem	29		
Part	1,	and	C'	=	A'	for	two	reasons:	
the	image	of	AC	is	a	line	through	B	parallel	to	AC	by	Theorem	29	Part	2,	and	BA'	=	AC	
because	translation	preserves	distance.	Because	∠ABB'	=	180˚,		
α'	+	β'	+	γ	=	α	+	β	+	γ	=	180˚.	Also,	from	the	diagram,	exterior	∠CBB'	=	α	+	β	and	is	
greater	than	either	α	or	β.		
Pedagogical	Note:	An	informal	version	of	this	proof	can	be	discussed	with	students	
after	asking	them	to	find	a	tessellation	based	on	a	scalene	triangle	tile.)	

34. The	sum	of	the	interior	angles	of	a	quadrilateral	is	360˚.	(In	a	concave	quadrilateral,	
one	interior	angle	will	be	greater	than	180˚.	Such	an	angle	is	called	a	reflex	angle.)	
Proof:	Draw	a	diagonal	from	the	vertex	of	a	reflex	angle	if	there	is	one,	arbitrarily	
otherwise.	The	diagonal	divides	the	quadrilateral	into	two	triangles,	the	sum	of	
whose	angles	is	180˚.	The	angles	of	both	triangles,	together,	make	up	the	interior	
angles	of	the	quadrilateral.	
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Chapter	2:	Symmetry	Definitions	and	Properties	-		
Triangles	and	Quadrilaterals	

	
We	define	special	triangles	and	quadrilaterals	in	terms	of	their	symmetries.	We	
begin	each	section	with	a	symmetry	definition,	then	use	it	to	deduce	the	figure’s	
properties.	The	proofs	are	generally	easier	than	the	traditional	approach.		
	
Chapter	3	deals	with	the	converse:	we	supply	conditions	and	prove	that	the	
figure	has	the	defining	symmetry.	This	is	a	more	difficult	task.	By	the	end	of	
Chapter	3,	we	will	have	shown	that	the	traditional	definitions	are	equivalent	to	
the	symmetry	definitions.	
	
The	general	trapezoid	is	a	special	case,	because	it	has	no	symmetry.	We	can	use	a	
transformation	to	define	it,	but	not	an	isometry.	For	that	reason,	we	postpone	
theorems	about	a	general	trapezoid	until	Chapter	4:	Basics	of	Dilation	and	
Similarity.	
	
Our	definitions	are	inclusive,	which	is	logical,	and	moreover	consistent	with	the	
behavior	of	dynamic	geometry	software.	For	example,	you	can	drag	a	vertex	of	a	
dynamic	isosceles	trapezoid	to	make	it	a	rectangle,	so	we	consider	a	rectangle	as	
a	special	isosceles	trapezoid.	Similarly,	an	equilateral	triangle	is	a	special	
isosceles	triangle,	a	rhombus	is	a	special	kite,	and	so	on.	
	
Pedagogical	Note:	Students	most	likely	are	already	familiar	with	the	traditional	
definitions	of	special	triangles	and	quadrilaterals.	This	chapter	can	be	preceded	
with	the	Symmetric	Polygons	activity,	where	students	are	given	symmetry	
definitions,	and	asked	to	recognize	which	polygon	can	be	defined	that	way.	
[insert	link	here]	

	
1. *	The	image	of	a	vertex	in	a	line	of	symmetry	is	also	a	vertex.	

Proof:	A	vertex	is	the	common	endpoint	of	two	sides.	Because	collinearity	is	
preserved,	sides	must	map	onto	sides.	So,	the	image	of	a	vertex	must	also	lie	on	
two	sides.	A	point	on	two	sides	is	a	vertex,	so	it	must	also	be	a	vertex.	
	

2. Isosceles	Triangle:	A	triangle	with	at	least	one	line	of	symmetry.	
	

The	etymology	of	“isosceles”,	of	course,	is	“equal	legs”.	In	the	scheme	we	
propose,	this	is	no	longer	the	definition;	it	is	a	property	that	must	be	proved.	
(See	property	(b)	below.)	
	
Properties:	

a. One	vertex	lies	on	the	line	of	symmetry	and	the	other	two	are	each	other's	
reflections.	
Proof:	Because	there	is	an	odd	number	of	vertices,	one	of	them	must	lie	
on	the	line	of	symmetry.	
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b. An	isosceles	triangle	has	two	equal	sides	and	two	

equal	angles.	
Proof:	Reflection	preserves	side	lengths	and	angle	
measure.	If	vertex	A	is	on	the	line	of	symmetry,	
then	AB	=	AC	and	∠B	=	∠C.	
	

c. The	perpendicular	bisector	of	the	third	side	of	an	
isosceles	triangle	bisects	an	angle	of	the	triangle,	so	
the	line	of	symmetry	is	an	altitude,	a	median,	and	a	
perpendicular	bisector.	
Proof:	By	the	definition	of	reflection,	the	line	of	symmetry	l	is	the	
perpendicular	bisector	of	BC.	It	also	must	pass	through	A.	Since	reflection	
preserves	angles,		
∠DAB	=	∠DAC,	so	l	bisects	∠BAC.	l	is	clearly	an	altitude,	median,	and	
perpendicular	bisector.	
	

3. Equilateral	Triangle:	A	triangle	with	at	least	two	lines	of	symmetry.	
	
Other	(equivalent)	definitions	are	possible.	We	prefer	this	one,	as	it	is	
economical,	and	facilitates	the	proof	of	properties.	
	
Note	that	once	again,	the	etymology	does	not	correspond	to	the	definition;	we	
must	prove	all	sides	are	equal.	(See	property	(b)	below.)	
	
Properties:	

a. An	equilateral	triangle	has	3-fold	rotational	symmetry.	
Proof:	Let	m	and	n	be	the	symmetry	lines	
through	A	and	C	respectively.	The	
composition	of	reflections	in	m,	then	n	
maps	the	triangle	onto	itself	and	is	a	
rotation	around	their	intersection	point	D.	
Call	this	rotation	r.	r	maps	A	onto	B,	B	onto	
C,	and	C	onto	A.	Repeating	this	rotation	
three	times	gives	the	identity	
transformation,	so	the	triangle	has	3-fold	
rotational	symmetry	around	the	intersection	point	of	its	two	lines	of	
symmetry.	
	

b. All	sides	of	an	equilateral	triangle	are	equal	and	each	angle	is	60˚.	
Proof:	Rotation	preserves	side	lengths	and	angle	measure.	Since	the	sum	
of	the	angles	in	a	triangle	is	180˚,	each	angle	is	60˚.	
	

c. An	equilateral	triangle	has	three	concurrent	lines	of	symmetry.	
Proof:	r	maps	A	to	B	and	D	to	itself,	so	m',	the	image	of	m	under	r,	passes	
through	B	and	D.	Since	m	perpendicularly	bisects	BC,	m'	must	



March	2018	 ©	Lew	Douglas	and	Henri	Picciotto	

www.MathEducationPage.org	 	 Chapter	2,	p.	3	

perpendicularly	bisect	CA	because	rotation	
preserves	segment	length	and	angle	measure.	
Therefore	m'	is	a	third	line	of	symmetry	of	
ΔABC.	
	

d. Each	line	of	symmetry	of	an	equilateral	
triangle	is	an	altitude,	a	median,	and	a	
perpendicular	bisector.	
Proof:	The	triangle	is	isosceles	in	three	
different	ways.	
	

The	next	figure,	a	parallelogram,	is	defined	using	rotational	symmetry,	so	we	need	a	
few	comments	about	vocabulary.	If	a	figure	coincides	with	itself	n	times	in	one	
complete	turn	about	a	specified	point	(often	called	its	center),	we	say	the	figure	has	
n-fold	rotational	symmetry.	For	example,	a	regular	pentagon	has	5-fold	rotational	
symmetry.	We	also	say	that	a	regular	pentagon	has	72˚	rotational	symmetry,	
because	a	rotation	of	72˚	around	its	center	will	map	it	onto	itself.	We	could	make	the	
same	statement	using	any	integer	multiple	of	72˚,	but	it’s	more	descriptive	to	use	
the	smallest	positive	angle.	In	general,	the	smallest	rotation	angle	for	a	figure	with	
n-fold	rotational	symmetry	is	!"#˚! 	.	
	
4. Parallelogram:	A	quadrilateral	with	2-fold	(180˚)	rotational	symmetry.	

Note:	This	figure	and	a	general	trapezoid	are	the	only	special	quadrilaterals	
whose	definitions	do	not	involve	line	symmetry.	
	
Properties:	

a. *	The	image	of	a	vertex	under	the	symmetry	rotation	is	an	opposite	
vertex.	
Proof:	Let	r	be	the	2-fold	rotation.	r	followed	by	r	(r°r)	is	a	360°	rotation,	
i.e.	the	identity.	As	with	triangles,	the	image	of	a	vertex	under	r	must	be	a	
vertex.	Its	image	under	r°r	must	be	itself.	If	the	image	were	a	consecutive	
vertex,	then	the	image	under	r°r	would	be	the	next	consecutive	vertex		
(i.e.	the	opposite	vertex),	not	the	original.	Therefore,	the	image	is	the	
opposite	vertex.	
	

b. The	center	of	the	2-fold	rotation	is	the	common	midpoint	of	the	diagonals.	
Proof:	A	diagonal	must	rotate	into	itself	because	its	endpoints	switch.	So,	
a	diagonal	must	contain	the	center	of	rotation.	The	distance	from	the	
center	to	one	endpoint	must	equal	the	distance	to	the	other	because	
rotation	preserves	distance.	Therefore,	the	center	must	be	the	midpoint	
of	either	diagonal,	which	implies	it	is	the	common	midpoint	of	both.	
	

c. The	opposite	sides	of	a	parallelogram	are	parallel.	
Proof:	The	image	of	a	line	under	a	half-turn	around	a	point	not	on	the	line	
is	a	parallel	line.	
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d. Consecutive	angles	of	a	parallelogram	are	supplementary	
Proof:	This	is	a	property	of	parallel	lines	cut	by	a	transversal.	
	

e. *	The	image	of	a	side	under	r	is	an	opposite	side.	The	image	of	an	angle	
under	r	is	an	opposite	angle.	
Proof:	The	image	can't	be	a	consecutive	side	because	then	it	wouldn't	be	
parallel	to	the	pre-image.	The	image	of	an	angle	can't	be	a	consecutive	
angle	because	then	one	image	side	wouldn't	be	parallel	to	its	pre-image.	
	

f. The	opposite	sides	and	opposite	angles	of	a	parallelogram	are	equal.	
Proof:	Rotation	preserves	segment	length	and	angle	measure.	
	

5. Kite:	A	quadrilateral	with	at	least	one	line	of	symmetry	through	opposite	
vertices.	(It	is	possible	to	omit	“opposite”	from	the	definition	and	prove	that	if	a	
line	of	symmetry	passes	through	vertices,	they	must	be	opposite.	For	most	
students,	this	sort	of	subtlety	would	be	counterproductive.	On	the	other	hand,	it	
would	make	for	an	interesting	discussion.)	
	
Properties:	

a. A	kite	has	two	disjoint	pairs	of	consecutive	equal	sides	and	one	pair	of	
equal	opposite	angles.	(We	need	to	say	“disjoint,”	because	the	pairs	can't	
have	a	common	side.)	
Proof:	Reflection	in	the	line	of	symmetry	preserves	segment	length	and	
angle	measure.		
	

b. The	line	of	symmetry	of	a	kite	bisects	a	pair	of	opposite	angles.	
Proof:	Reflection	preserves	angle	measure.	
	

c. The	diagonal	of	a	kite	that	lies	on	the	line	of	symmetry	perpendicularly	
bisects	the	other	diagonal.	
Proof:	The	symmetry	line	perpendicularly	bisects	the	segment	joining	the	
vertices	not	on	the	line	because	they	reflect	into	each	other.	
	

6. Isosceles	Trapezoid:	A	quadrilateral	with	a	line	of	symmetry	though	interior	
points	of	opposite	sides.	If	there	is	only	one	such	line	of	symmetry,	these	sides	
are	called	bases.	In	this	case,	the	other	two	sides	are	called	legs.	
	
Properties:	

a. Two	vertices	of	an	isosceles	trapezoid	are	on	one	side	of	the	symmetry	
line	and	two	are	on	the	other.	
Proof:	Since	reflection	maps	vertices	to	vertices,	the	four	vertices	must	be	
evenly	split	on	either	side	of	the	symmetry	line.	
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b. The	symmetry	line	of	an	isosceles	trapezoid	is	the	perpendicular	bisector	
of	the	bases.		
Proof:	One	endpoint	of	each	of	these	sides	must	reflect	into	the	other.	A	
reflection	line	perpendicularly	bisects	the	segment	joining	pre-image	and	
image	points	if	these	points	are	not	on	the	reflection	line.	
	

c. The	bases	of	an	isosceles	trapezoid	are	parallel.	
Proof:	They	are	both	perpendicular	to	the	symmetry	line.	Two	distinct	
lines	perpendicular	to	the	same	line	are	parallel.	
	

d. The	legs	of	an	isosceles	trapezoid	are	equal.	
Proof:	Reflection	preserves	segment	length.	
	

e. Two	consecutive	angles	of	an	isosceles	triangle	on	the	same	base	are	
equal.	
Proof:	Reflection	preserves	angle	measure.	
	

f. The	diagonals	of	an	isosceles	trapezoid	are	equal.	
Proof:	One	diagonal	reflects	to	the	other.	Reflection	preserves	segment	
length.	
	

g. The	intersection	point	of	the	equal	diagonals	of	an	isosceles	trapezoid	lies	
on	the	symmetry	line.	
Proof:	The	point	where	one	diagonal	intersects	the	symmetry	line	must	
be	invariant	under	reflection	in	the	symmetry	line	because	it	lies	on	it.	
Therefore,	it	also	lies	on	the	other	diagonal.	
	

h. The	intersection	point	of	the	diagonals	of	an	isosceles	trapezoid	divides	
each	diagonal	into	equal	subsections.	
Proof:	The	subsections	of	one	diagonal	determined	by	the	intersection	
point	reflect	onto	the	subsections	of	the	other.	These	subsections	are	
equal	because	reflection	preserves	segment	length.	
	

7. Rhombus:	A	quadrilateral	with	two	lines	of	symmetry	passing	through	opposite	
vertices.	(So,	a	rhombus	is	a	kite	in	two	different	ways.)	
	
Properties:	

a. A	rhombus	has	all	sides	equal	and	two	pairs	of	equal	opposite	angles.	
Proof:	A	kite	has	two	disjoint	pairs	of	consecutive	equal	sides	and	one	
pair	of	equal	opposite	angles.	The	result	follows	because	a	rhombus	is	a	
kite	in	two	different	ways	(i.e.	both	diagonals	are	lines	of	symmetry).	
	

b. Each	diagonal	of	a	rhombus	bisects	its	angles.	
Proof:	Each	line	of	symmetry	bisects	a	pair	of	opposite	angles	(property	
of	kites).	
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c. The	diagonals	of	a	rhombus	perpendicularly	bisect	each	other.	
Proof:	The	diagonal	of	a	kite	that	lies	on	the	line	of	symmetry	
perpendicularly	bisects	the	other	diagonal.	For	a	rhombus,	each	diagonal	
has	this	property.	
	

d. A	rhombus	is	a	special	parallelogram.	
Proof:	Since	a	rhombus	has	two	perpendicular	lines	of	symmetry,	the	
composition	of	reflection	in	these	lines	is	a	180˚	rotation	around	their	
point	of	intersection.	(The	composition	of	two	reflections	is	a	rotation	
around	their	point	of	intersection	through	twice	the	angle	between	the	
reflection	lines.)	Since	each	reflection	maps	the	rhombus	onto	itself,	their	
composition	does	also.		
	

e. The	opposite	sides	of	a	rhombus	are	parallel.	
Proof:	Since	a	rhombus	is	a	parallelogram,	the	opposite	sides	are	parallel.	
	

8. Rectangle:	A	quadrilateral	with	two	lines	of	symmetry	passing	through	interior	
points	of	the	opposite	sides.	(So,	a	rectangle	is	an	isosceles	trapezoid	in	two	
different	ways.)	
	
Properties:	

a. The	symmetry	lines	of	a	rectangle	perpendicularly	bisect	the	opposite	
sides.	
Proof:	A	rectangle	is	an	isosceles	trapezoid	in	two	different	ways.	
	

b. A	rectangle	is	equiangular.	
Proof:	Two	consecutive	angles	of	an	isosceles	trapezoid	that	share	a	base	
are	equal.	Both	pairs	of	opposite	sides	are	bases	because	of	the	two	
different	ways,	so	any	two	consecutive	angles	share	a	base.	
	

c. All	angles	of	a	rectangle	are	right	angles.	
Proof:	The	sum	of	the	interior	angles	of	any	quadrilateral	is	360˚	and		
360	÷	4	=	90.	
	

d. The	symmetry	lines	of	a	rectangle	are	perpendicular.	
Proof:	The	lines	divide	the	rectangle	into	four	quadrilaterals.	Each	has	
three	right	angles:	one	is	an	angle	of	the	rectangle	and	the	other	two	are	
formed	by	a	side	and	a	symmetry	line,	which	are	perpendicular.	Since	the	
sum	of	the	angles	of	a	quadrilateral	is	360˚,	the	fourth	angle	at	the	
intersection	of	the	symmetry	lines	must	also	be	a	right	angle.	
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e. A	rectangle	has	2-fold	rotational	symmetry,	so	it	is	a	special	
parallelogram.	
Proof:	Reflecting	a	rectangle	in	one	line	of	symmetry	followed	by	the	
other	maps	the	rectangle	onto	itself	and	is	equivalent	to	a	180˚	rotation	
because	the	symmetry	lines	meet	at	right	angles.	Therefore,	a	rectangle	
has	2-fold	rotational	symmetry	around	the	intersection	of	the	symmetry	
lines.	
	

f. The	opposite	sides	of	a	rectangle	are	parallel	and	equal.	
Proof:	These	are	properties	of	a	parallelogram.	A	rectangle	is	a	special	
parallelogram.	
	

g. The	diagonals	of	a	rectangle	are	equal.	
Proof:	This	is	a	property	of	an	isosceles	trapezoid.	A	rectangle	is	a	special	
isosceles	trapezoid.	
	

h. The	diagonals	of	a	rectangle	bisect	each	other.	
Proof:	This	is	a	property	of	a	parallelogram.	A	rectangle	is	a	special	
parallelogram.	
	

i. The	diagonals	of	a	rectangle	and	the	lines	of	symmetry	are	all	concurrent.	
Proof:	The	intersection	point	of	the	equal	diagonals	of	an	isosceles	
trapezoid	lies	on	the	symmetry	line.	For	a	rectangle,	the	intersection	
point	lies	on	both	symmetry	lines,	so	it	is	their	intersection.	
	

9. Square:	A	quadrilateral	with	four	lines	of	symmetry:	two	diagonals	and	two	lines	
passing	through	interior	points	of	opposite	sides.	
	
Properties:	

a. A	square	is	a	special	rectangle,	rhombus,	kite,	and	isosceles	trapezoid,	so	
it	inherits	all	the	properties	of	these	quadrilaterals.	
Proof:	True,	by	the	definition	of	a	square.	
	

b. If	a	square	and	all	four	symmetry	lines	are	drawn,	all	the	acute	angles	are	
45˚.	
Proof:	The	diagonals	bisect	the	interior	right	angles	because	a	square	is	a	
rhombus.	All	eight	right	triangles	formed	have	a	right	angle	where	the	
symmetry	lines	intersect	the	sides	and	a	45˚	angle	where	they	intersect	
the	vertices.	Since	the	sum	of	the	angles	of	a	triangle	is	180˚,	the	
remaining	angles	at	the	center	must	all	be	45˚.	
	

c. A	symmetry	line	through	sides	and	a	symmetry	line	through	vertices	
form	a	45˚	angle.	
Proof:	An	immediate	consequence	of	the	result	just	above.	
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d. A	square	has	4-fold	rotational	symmetry.	
Proof:	Reflecting	a	square	in	a	line	of	symmetry	through	the	sides	
followed	by	a	line	of	symmetry	through	the	vertices	maps	the	square	onto	
itself.	It	is	equivalent	to	a	90˚	rotation	because	these	symmetry	lines	meet	
at	a	45˚angle.	Therefore,	a	square	has	4-fold	rotational	symmetry	around	
its	center	(the	intersection	point	of	the	lines	of	symmetry).	
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Chapter	3:	Proving	Triangles	and	Quadrilaterals	
Satisfy	Symmetry	Definitions	

	
1. Isosceles	Triangle:	A	triangle	with	one	line	of	symmetry.	

a. If	a	triangle	has	two	equal	sides,	it	is	isosceles.	
Proof:	Let	AB	and	AC	be	the	equal	sides.	A	
must	lie	on	the	perpendicular	bisector	l	of	
BC	because	it	is	equidistant	from	B	and	C.	By	
the	definition	of	reflection,	B'	=	C	under	
reflection	in	l.	A'	=	A	because	it	lies	on	l.	
Therefore,	l	is	a	line	of	symmetry	for	ΔABC.	
	

b. If	a	triangle	has	two	equal	angles,	it	is	
isosceles.	
Proof	1:	By	Theorem	21	of	Chapter	1,	the	
rays	AB	and	AC	are	reflections	of	each	other	
in	the	angle	bisector	AD	of	∠BAC.	Two	
angles	of	∆BAD	and	∆CAD	are	equal,	so	the	
third	angles	(∠BDA	and	∠CDA)	must	be	equal.	Since	they	are	
supplementary,	they	are	both	right	angles.	It	follows	that	the	reflection	
of	B	in	ray	AD	must	be	C.	Since	A	is	its	own	reflection	in	line	AD,	AD	is	a	
line	of	symmetry	for	the	triangle.	
	
Proof	2:	Draw	segment	EF,	which	perpendicularly	bisects	side	BC.	B	and	
C	interchange	under	this	reflection.	Because	reflection	preserves	angles	
and	∠B	=	∠C,	ray	BA	and	ray	CA	interchange	also.	A	is	on	both	rays,	so	A'	
must	be	on	both	rays	also.	But	A	is	the	only	point	on	both	rays,	so	A'	=	A	
under	this	reflection.	Since	A	is	a	fixed	point,	it	lies	on	the	reflection	line.	
Therefore,	line	EF	is	a	line	of	symmetry	for	the	triangle.	
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c. If	an	angle	bisector	of	a	triangle	is	also	an	altitude,	the	
triangle	is	isosceles.	
Proof:	Let	l,	the	bisector	of	∠BAC	be	perpendicular	to	
side	BC	at	D,	so	that	∠DAB	=	∠DAC	and		
∠ADB	=	∠ADC.	Two	angles	of	∆BAD	and	∆CAD	are	
equal,	so	the	third	angles	(∠B	and	∠C)	must	be	equal.	
By	Theorem	1b	above,	the	triangle	is	isosceles.	
	

d. If	an	altitude	of	a	triangle	is	also	a	median,	the	
triangle	is	isosceles.	
Proof:	Since	altitude	AD	is	also	a	median,	AD	is	the	
perpendicular	bisector	of	BC.	Since	any	point	on	the	perpendicular	
bisector	of	a	segment	is	equidistant	from	the	endpoints,	AB	=	AC.	By	
Theorem	1a	above,	the	triangle	is	isosceles.	
	

e. If	an	angle	bisector	of	a	triangle	is	also	a	median,	the	triangle	is	isosceles.	
Proof:	Postponed	until	the	end	of	the	rhombus	section	(after		
Theorem	6e),	because	a	rhombus	is	constructed	in	the	proof.	
	

2. Equilateral	Triangle:	A	triangle	with	two	lines	of	symmetry.	
a. If	a	triangle	has	all	sides	equal,	then	it's	an	

equilateral	triangle.	
Proof:	In	ΔABC,	AB	=	BC	=	CA.	Since		
AB	=	AC,	the	triangle	is	isosceles	with	
symmetry	line	m.	Since	CA	=	CB,	the	
triangle	is	isosceles	with	symmetry	line	n.	
Since	it	has	two	lines	of	symmetry,	it	is	
equilateral.	
	

b. If	a	triangle	has	all	angles	equal,	then	it's	
an	equilateral	triangle.	
Proof:	The	argument	is	virtually	identical	to	the	previous	one,	but	uses	
Theorem	1b	instead	of	1a.	
	

3. Parallelogram:	A	quadrilateral	with	2-fold	rotational	symmetry.	
a. If	the	diagonals	of	a	quadrilateral	bisect	each	other,	the	quadrilateral	is	a	

parallelogram.	
Proof:	Rotate	quadrilateral	ABCD	180˚	
around	point	E,	the	intersection	of	the	
diagonals.	Since	the	rotation	is	180˚,	B'	lies	on	
ray	ED.	Since	rotation	preserves	distance,	
B'	=	D.	Similarly,	A'	=	C.	Similarly,	C'	=	A	and		
D'	=	B.	Because	rotation	maps	segments	to	
segments,	each	side	of	ABCD	maps	to	the	
opposite	side.	Therefore,	quadrilateral	ABCD	
has	2-fold	rotational	symmetry.	By	definition,	ABCD	is	a	parallelogram.	
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b. If	opposite	sides	of	a	quadrilateral	are	parallel,	the	quadrilateral	is	a	
parallelogram.	
Proof:	Given	quadrilateral	ABCD	as	in	this	figure,	with	sides	extended	to	
lines	k,	l,	m,	and	n.	We	would	like	to	prove	that	it	has	2-fold	(half-turn)	
symmetry.	

	
	
Let	M	be	the	midpoint	of	diagonal	AC.	

	
Consider	H,	the	half-turn	with	center	M.	Since	M	is	the	midpoint	of	
segment	AC,	A'	=	C	and	C'	=	A	under	H.	Because	M	is	on	neither	k	nor	l,	
their	image	lines	are	parallel	to	their	pre-images.	Because	of	the	parallel	
postulate,	there	is	only	one	parallel	to	k	through	C	and	one	parallel	to	l	
through	A.	Therefore,	k'	=	m,	and	l'	=	n.	B	is	the	intersection	of	lines	k	and	
l,	and	therefore	its	image	is	the	
intersection	of	lines	m	and	n,	
which	is	D.	Since	A'	=	C	and		
B'	=	D,	ABCD	has	2-fold	
rotational	symmetry.	By	
definition,	ABCD	is	a	
parallelogram.	
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c. If	opposite	sides	of	a	quadrilateral	are	equal,	the	quadrilateral	is	a	
parallelogram.	
Proof:	In	quadrilateral	ABCD,	draw	diagonal	AC	and	its	midpoint	E.	Under	
a	half	turn	around	E,	A'	=	C	and	C'	=	A.	Since	CB	=	AD,	B'	lies	on	circle	A	
with	radius	AD.	Since	AB	=	CD,	B'	lies	on	circle	C	with	radius	CD.	These	
circles	intersect	at	D	and	F.	But	F	is	on	the	same	side	of	line	AC	as	B,	so		
B'	≠	F.	Therefore	B'	=	D	and	ABCD	has	2-fold	symmetry	around	E.	By	
definition,	ABCD	is	a	parallelogram.		
	

d. If	two	sides	of	a	quadrilateral	are	equal	and	parallel,	the	quadrilateral	is	a	
parallelogram.	
Proof:	In	quadrilateral	ABCD,	
suppose	AB	is	equal	and	
parallel	to	DC.	Draw	
diagonal	BD	and	its	
midpoint	M.	Under	a	half-
turn	around	M,	B'	=	D	and		
D'	=	B.	The	image	of	ray	BA	
is	parallel	to	AB,	so	it	must	coincide	with	ray	DC.	Because	AB	=	DC,	that	
means	that	A'	=	C,	and	therefore	C'	=	A.	Hence	ABCD	is	a	parallelogram.	
	

4. Kite:	A	quadrilateral	with	one	line	of	symmetry	through	opposite	vertices.	
a. If	two	disjoint	pairs	of	consecutive	sides	of	a	quadrilateral	are	equal,	the	

quadrilateral	is	a	kite.	
Proof:	In	quadrilateral	ABCD,	suppose	AB	=	AD	
and	CB	=	CD.	Since	A	and	C	are	both	equidistant	
from	B	and	D,	they	lie	in	the	perpendicular	
bisector	of	diagonal	BD.	Therefore,	l	is	the	
perpendicular	bisector	of	diagonal	BD.	Under	
reflection	in	l,	B'	=	D	and	D'	=	B.	Because	A	and	C	
both	lie	on	l,	A'	=	A	and	C'	=	C.	l	is	therefore	a	line	
of	symmetry	and	ABCD	is	a	kite.	
	

b. If	a	diagonal	of	a	quadrilateral	bisects	a	pair	of	
opposite	angles,	the	quadrilateral	is	a	kite.	
Proof:	Label	as	l	the	line	through	diagonal	AC	that	
bisects	∠BAD	and	∠BCD.	Consider	reflection	in	
l.	Since	A	and	C	are	on	l,	A'	=	A	and	C'	=	C.	Since	
∠BAC	=	∠DAC,	B'	lies	on	ray	AD.	Since		
∠BCA	=	∠DCA,	B'	lies	on	ray	CD.	Because	these	
rays	intersect	at	D,	B'	=	D,	which	implies	that	
D'	=	B.	Therefore,	l	is	a	line	of	symmetry	and	
ABCD	is	a	kite.	
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c. If	one	diagonal	of	a	quadrilateral	perpendicularly	bisects	the	other,	the	
quadrilateral	is	a	kite.	
Proof:	In	quadrilateral	ABCD,	diagonal	AC	perpendicularly	bisects	
diagonal	BD.	Let	l	be	the	line	through	A	and	C.	Reflect	ABCD	in	l.	Since	A	
and	C	lie	on	l,	A'	=	A	and	C'	=	C.	By	the	definition	of	reflection,	B'	=	D	and		
D'	=	B.	Therefore,	l	is	a	line	of	symmetry	and	ABCD	is	a	kite.	
	

5. Isosceles	Trapezoid:	A	quadrilateral	with	a	line	of	symmetry	though	interior	
points	of	opposite	sides.	

a. If	one	pair	of	opposite	sides	of	a	quadrilateral	are	parallel	and	a	pair	of	
consecutive	angles	on	one	of	these	sides	are	equal,	the	quadrilateral	is	an	
isosceles	trapezoid.	
Proof:	In	quadrilateral	ABCD,		
DC	||	AB	and	∠A	=	∠B.	Let	l	be	
the	perpendicular	bisector	of	
AB.	Under	reflection	in	l,	A'	=	B	
and	B'	=	A.	Since	DC	||	AB,	DC⊥l.	
Therefore,	D'	lies	on	ray	DC.	
Because	A'	=	B,	ray	AB	maps	to	
ray	BA,	∠A	=	∠B,	and	reflection	
preserves	angles,	D'	lies	on	ray	
BC.	These	rays	intersect	at	C,	so	
D'	=	C.	Thus,	l	is	a	line	of	
symmetry	for	ABCD	and	ABCD	is	an	isosceles	trapezoid.	
	

b. If	two	disjoint	pairs	of	consecutive	angles	of	a	quadrilateral	are	equal,	the	
quadrilateral	is	an	isosceles	trapezoid.	
Proof:	In	quadrilateral	ABCD,		
∠B	=	∠A	and	∠C	=	∠D.	Because	
∠A	+	∠B	+	∠C	+	∠D	=	360˚,	
2∠A	+	2∠D	=	360˚.	Dividing	both	
sides	by	2	gives	∠A	+	∠D	=	180˚,	
so	DC	||	AB.	By	Theorem	5a,	
ABCD	is	an	isosceles	trapezoid.	
	

	 	



March	2018	 ©	Lew	Douglas	and	Henri	Picciotto	

www.MathEducationPage.org	 	 Chapter	3,	p.	6	

c. If	two	opposite	sides	of	a	quadrilateral	are	parallel	and	if	the	other	two	
sides	are	equal	but	not	parallel,	then	the	quadrilateral	is	an	isosceles	
trapezoid.	
Proof:	In	quadrilateral	ABCD,	
DC	||	AB,	AD	=	BC,	and	AD	is	
not	parallel	to	BC.	Through	
B,	draw	a	line	parallel	to	AD	
meeting	ray	DC	at	E.	Since	
ABDE	has	two	pairs	of	
opposite	parallel	sides,	it	is	a	
parallelogram.	Because	the	
opposite	angles	of	a	
parallelogram	are	equal,	∠A	=	∠BEC.	The	opposite	sides	of	a	
parallelogram	are	also	equal,	so	AD	=	BC	=	BE.	If	two	sides	of	a	triangle	are	
equal,	the	triangle	is	isosceles,	which	implies	that	∠BEC	=	∠BCE.	Finally,	
because	DC	||	AB,	∠BCE	=	∠ABC.	The	chain	of	equal	angles	now	reads	
∠A	=	∠BEC	=	∠BCE	=	∠ABC.	This	means	that	ABCD	has	a	pair	of	
consecutive	equal	angles	on	one	of	its	parallel	sides.	By	Theorem	5a,	
ABCD	is	an	isosceles	trapezoid.	
	

d. If	a	line	perpendicularly	bisects	two	sides	of	a	quadrilateral,	the	
quadrilateral	is	an	isosceles	trapezoid.	
Proof:	The	two	sides	can’t	be	consecutive,	because	if	they	were,	you	
would	have	two	consecutive	
parallel	sides,	which	is	
impossible.	In	quadrilateral	
ABCD,	l	is	the	perpendicular	
bisector	of	AB	and	DC.	Under	
reflection	in	l,	therefore,		
D'	=	C	and	A'	=	B.	Thus,	l	is	a	
line	of	symmetry	and	ABCD	
is	an	isosceles	trapezoid.	
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e. If	two	sides	of	a	quadrilateral	are	parallel,	and	if	the	diagonals	are	equal,	
the	quadrilateral	is	an	isosceles	trapezoid.	
Proof:		
	
I
n
	
q
u
a
d
r
i	
In	quadrilateral	ABCD,	DC	||	AB	and	AC	=	BD.	Let	M	be	the	midpoint	of	BC.	
Rotate	ABCD	180˚	around	M.	Since	B'	=	C,	C'	=	B,	BD'	||	DC,	and		
CA'	||	AB,	A'	is	on	ray	DC	and	D'	is	on	ray	AB.	Because	rotation	preserves	
segment	length,	BD	=	CD'.	Therefore,	AC	=	BD	=	CD'.	Consider	ΔACD'.	Since	
two	sides	are	equal,	it	is	isosceles,	so	∠BAC	=	∠BD'C.	BD	is	also	rotated	
180˚	around	M,	so	D'C	||	BD.	Using	transversal	AD',	we	see	that		
∠BD'C	=	∠ABD.	Thus	∠	BAC	=	∠	BD'C	=	∠	ABD.	Because	two	angles	in	ΔABE	
are	equal,	the	triangle	is	isosceles,	which	implies	that	AE	=	BE.	In	other	
words,	E	is	equidistant	from	A	and	B,	so	it	must	lie	on	the	perpendicular	
bisector	of	AB.	A	similar	argument	shows	that	E	lies	on	the	perpendicular	
bisector	of	DA.	Since	the	perpendicular	bisectors	of	AB	and	DC	pass	
through	the	same	point	E,	they	coincide.	By	Theorem	5d,	ABCD	is	an	
isosceles	trapezoid.	
	

6. Rhombus:	A	quadrilateral	with	two	lines	of	symmetry	passing	through	opposite	
vertices.	(So,	a	rhombus	is	a	kite	in	two	different	ways.)	

a. If	the	diagonals	of	a	quadrilateral	perpendicularly	bisect	each	other,	the	
quadrilateral	is	a	rhombus.		
Proof:	By	the	definition	of	reflection,	the	two	vertices	not	on	either	
diagonal	are	images	of	each	other	under	reflection	in	that	diagonal.	
Therefore,	both	diagonals	are	lines	of	symmetry,	which	is	the	definition	of	
a	rhombus.	
	

b. If	a	quadrilateral	is	equilateral,	it	is	a	rhombus.	
Proof:	Since	opposite	sides	are	equal,	the	quadrilateral	is	a	parallelogram.	
Therefore,	the	diagonals	bisect	each	other.	Since	two	disjoint	pairs	of	
consecutive	sides	are	equal,	the	quadrilateral	is	a	kite.	Therefore,	the	
diagonals	are	perpendicular.	Now	we	know	that	the	diagonals	
perpendicularly	bisect	each	other,	so	the	quadrilateral	is	a	rhombus	by	
Theorem	6a.		
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c. If	both	diagonals	of	a	quadrilateral	bisect	a	pair	of	opposite	angles,	the	
quadrilateral	is	a	rhombus.	
	Proof:	Consider	the	diagonals	separately.	
Since	∠ABC	and	∠ADC	are	bisected,	ABCD	
is	a	kite	with	AD	=	CD	and	AB	=	CB.	Since	
∠BAD	and	∠BCD	are	bisected,	ABCD	is	a	
kite	with	AD	=	AB	and	CD	=	CB.	Therefore,	
all	four	sides	are	equal	and	the	
quadrilateral	is	a	rhombus	by	Theorem	6b.	
	

d. If	both	pairs	of	opposite	sides	of	a	quadrilateral	are	parallel,	and	if	two	
consecutive	sides	are	equal,	the	quadrilateral	is	a	rhombus.	
Proof:	Since	both	pairs	of	opposite	sides	are	parallel,	the	quadrilateral	is	a	
parallelogram.	Therefore,	both	pairs	of	opposite	sides	are	equal.	Since	a	
pair	of	consecutive	sides	are	equal,	all	four	sides	must	be	equal.	Hence	the	
quadrilateral	is	a	rhombus	by	Theorem	6b.	
	

e. If	a	diagonal	of	a	parallelogram	bisects	an	angle,	the	parallelogram	is	a	
rhombus.	
Proof:	In	parallelogram	ABCD,	diagonal	
AC	bisects	∠DAB.	The	opposite	sides	of	
a	parallelogram	are	parallel,	so	this	
implies	that	∠DCB	is	bisected	as	well	
by	angle	properties	of	parallel	lines.	By	
Theorem	4b,	ABCD	is	a	kite.	Therefore,	
ABCD	is	a	rhombus	by	Theorem	6d.	

Now	we	are	ready	to	prove	Theorem	1e:	If	
an	angle	bisector	of	a	triangle	is	also	a	median,	the	
triangle	is	isosceles.	
Proof:	In	ΔABC,	ray	AD	bisects	∠BAC	and	BD	=	CD.	
Rotate	ΔABC	180˚	around	D.	Because	D	is	the	
midpoint	of	BC,	B'	=	D	and	D'	=	B.	Because	rotation	
preserves	distance,	AD	=	A'D.	Now	the	diagonals	of	
quadrilateral	ABA'C	bisect	each	other,	so	ABA'C	is	a	
parallelogram.	But	diagonal	AA'	bisects	∠BAC,	so	by	
Theorem	6e,	ABA'C	is	a	rhombus.	A	rhombus	is	
equilateral,	so	AB	=	AC.	
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7. Rectangle:	A	quadrilateral	with	two	lines	of	symmetry	passing	through	
midpoints	of	the	opposite	sides.	(So,	a	rectangle	is	an	isosceles	trapezoid	in	two	
different	ways.)	

a. If	a	quadrilateral	is	equiangular,	it	is	a	rectangle.	
Proof:	Because	∠A	=	∠B	and	∠C	=	∠D,	
ABCD	is	an	isosceles	trapezoid	with	
line	of	symmetry	through	midpoints	
of	AB	and	DC	by	Theorem	5b.	
Similarly,	∠A	=	∠D	and	∠B	=	∠C,	so	
ABCD	is	an	isosceles	trapezoid	with	
line	of	symmetry	through	midpoints	
of	AD	and	BC.	By	definition,	ABCD	is	a	
rectangle.	
	

b. If	a	parallelogram	has	a	right	angle,	then	the	parallelogram	is	a	rectangle.	
Proof:	Suppose	∠A	=	90˚.	Then	∠C	=	90˚	because	opposite	angles	of	a	
parallelogram	are	equal.	The	sum	of	the	interior	angles	of	a	quadrilateral	
is	360˚,	which	leaves	a	total	of	180˚	for	∠B	and	∠D.	Since	they	are	also	
equal,	they	must	be	right	angles	as	well.	Hence	all	angles	are	equal	right	
angles	and	the	quadrilateral	is	a	rectangle	by	Theorem	7a.	
	

c. An	isosceles	trapezoid	with	a	right	angle	is	a	rectangle.	
Proof:	Suppose	ABCD	is	an	isosceles	
trapezoid	with	line	of	symmetry	
passing	through	bases	AB	and	DC.	
Without	loss	of	generality,	we	can	
suppose	that	∠A	=	90˚.	Because	the	
bases	of	an	isosceles	trapezoid	are	
parallel	∠EDC	=	∠A	=	90˚.	∠ADC	and	
∠EDC	are	supplementary,	so		
∠ADC	=	90˚	also.	We	also	know	that	
two	consecutive	angles	of	an	isosceles	
trapezoid	on	the	same	base	are	equal,	
so	∠B	=	∠A	=	90˚and	∠C	=	∠ADC	=	90˚.	
Now	ABCD	is	equiangular,	so	by	Theorem	7a	it	is	a	rectangle.	
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d. If	the	diagonals	of	a	parallelogram	are	equal,	the	parallelogram	is	a	
rectangle.	
Proof:	Because	ABCD	is	a	
parallelogram,	AB	||	DC	and	diagonals	
AC	and	BD	bisect	each	other.	Since	the	
diagonals	are	equal	as	well,	ABCD	is	an	
isosceles	trapezoid	whose	line	of	
symmetry	passes	through	midpoints	of	
AB	and	DC	by	Theorem	5e.	By	the	same	
argument	with	parallel	sides	AD	and	
BC,	ABCD	is	an	isosceles	trapezoid	
whose	line	of	symmetry	passes	through	midpoints	of	AD	and	BC.	It	
follows	that	ABCD	satisfies	the	symmetry	definition	of	a	rectangle.	
	

8. Square:	A	quadrilateral	with	four	lines	of	symmetry:	two	passing	through	
opposite	vertices	and	two	passing	through	interior	points	of	opposite	sides.	

a. A	rectangle	with	consecutive	equal	sides	is	a	square.	
Proof:	A	rectangle	has	two	lines	of	symmetry	passing	through	the	
opposite	sides.	The	opposite	sides	of	a	rectangle	are	equal,	so	if	two	
consecutive	sides	are	also	equal,	it	is	equilateral.	An	equilateral	
quadrilateral	is	a	rhombus,	so	its	diagonals	are	additional	lines	of	
symmetry.	Therefore,	the	rectangle	is	a	square.	
	

b. A	rhombus	with	consecutive	equal	angles	is	a	square.	
Proof:	The	diagonals	of	a	rhombus	are	lines	of	symmetry.	The	opposite	
angles	of	a	rhombus	are	equal,	so	if	two	consecutive	angles	are	also	equal,	
it	is	equiangular.	An	equiangular	quadrilateral	is	a	rectangle	by		
Theorem	7a,	so	it	has	two	additional	lines	of	symmetry	passing	through	
opposite	sides.	Therefore,	the	rhombus	is	a	square	
	

c. An	equilateral	quadrilateral	with	a	right	angle	is	a	square.	
Proof:	An	equilateral	quadrilateral	is	a	rhombus	by	Theorem	6b.	Opposite	
angles	of	a	quadrilateral	are	equal	and	the	sum	of	the	angles	is	360˚,	so	all	
angles	are	right	angles	and	the	quadrilateral	is	also	equiangular.	An	
equiangular	quadrilateral	is	a	rectangle	by	Theorem	7a.	If	a	quadrilateral	
is	both	a	rhombus	and	a	rectangle,	it	has	four	lines	of	symmetry	and	is	
therefore	a	square.	
	

d. An	equiangular	quadrilateral	with	consecutive	equal	sides	is	a	square.	
Proof:	An	equiangular	quadrilateral	is	a	rectangle	by	Theorem	7a.	The	
opposite	sides	of	a	rectangle	are	equal,	and	if	consecutive	sides	are	also	
equal,	it	must	be	equilateral.	An	equilateral	quadrilateral	is	a	rhombus	by	
Theorem	6b.	If	a	quadrilateral	is	both	a	rhombus	and	a	rectangle,	it	has	
four	lines	of	symmetry	and	is	therefore	a	square.	
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e. A	quadrilateral	with	4-fold	rotational	symmetry	is	a	square.	
Proof:	Since	a	quadrilateral	has	four	sides,	consecutive	sides	and	angles	
must	map	to	each	other	under	a	90˚	rotation.	Because	rotations	preserve	
sides	and	angles,	the	quadrilateral	must	be	both	equilateral	and	
equiangular,	which	implies	that	it	is	both	a	rectangle	and	a	rhombus.	If	a	
quadrilateral	is	both	a	rhombus	and	a	rectangle,	it	has	four	lines	of	
symmetry	and	is	therefore	a	square.	
	

9. Additional	Triangle	Theorems	
a. The	median	to	the	hypotenuse	of	a	right	

triangle	has	half	the	length	of	the	hypotenuse.	
Proof:	In	right	triangle	ABC,	BD	=	CD.	Rotate	
ΔABC	and	median	AD	180˚	around	D.	Because	
rotations	preserve	segment	length	and	the	
rotation	is	180˚,	D	is	the	midpoint	of	AA'	as	
well	as	BC.	Because	the	diagonals	of	quadrilateral	ABA'C	bisect	each	other,	
it	is	a	parallelogram	by	Theorem	3a.	But	a	parallelogram	with	a	right	
angle	is	a	rectangle	by	Theorem	7b,	and	the	diagonals	of	a	rectangle	are	
equal.	Thus	AD	=		!!!!

! = !
!!".	

b. A	segment	joining	the	midpoints	of	two	sides	of	a	triangle	(called	a	
midsegment)	is	parallel	to	the	third	side	and	half	as	long.	
Proof:	In	triangle	ABC,	D	and	E	are	midpoints	of	AC	and	BC	respectively.	
Rotate	ΔABC	and	
segment	DE	180˚	
around	point	E.	Since	
E	is	a	midpoint,	B'	=	C	
and	C'	=	B.	Therefore,	
quadrilateral	ABA'C	
has	2-fold	rotational	
symmetry,	so	by	
definition,	it	is	a	
parallelogram.	
Because	rotation	preserves	segment	length	and	D	is	a	midpoint,		
AD	=	DC	=	D'B.	But	AD	is	parallel	to	BD'	as	well,	so	ABD'D	is	also	a	
parallelogram	by	Theorem	3d.	The	opposite	sides	of	a	parallelogram	are	
parallel,	so	DE	||	AB.	Because	rotation	preserves	length,	DE	=	ED'	=	!!!!',	
and	because	the	opposite	sides	of	a	parallelogram	are	equal,	DD'	=	AB.	
Hence	DE	=	!!!".	
Note:	The	proof	is	shorter	and	more	elegant	using	dilation.	(See	Chapter	
4)	
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10. Given	two	distinct	parallel	lines	m	and	n,	there	is	a	reflection	mapping	one	to	the	
other.	
Proof:	Draw	line	f	perpendicular	to	m	at	P	
intersecting	n	at	Q.	f	is	also	perpendicular	
to	n	by	Theorem	15	of	Chapter	1.	(A	line	
perpendicular	to	one	of	two	distinct	
parallel	lines	is	perpendicular	to	the	
other.)	Draw	r,	the	perpendicular	bisector	
of	segment	PQ.	Under	reflection	in	r,		
P'	=	Q	by	definition.	We	will	show	that	any	
other	point	R	on	line	m	reflects	in	r	to	a	
point	on	line	n.	Through	R,	draw	line	g	
perpendicular	to	m;	g	will	also	be	
perpendicular	to	n.	Since	corresponding	
angles	are	equal,	g	is	parallel	to	f.	By	
Theorem	15	again,	g	is	perpendicular	to	r.	ABRP	and	QSAB	are	parallelograms	
with	a	right	angle,	so	by	Theorem	7b	they	are	rectangles.	Chapter	2,	Theorem	8f	
says	that	the	opposite	sides	of	a	rectangle	are	equal,	so	RB	=	AP	=	QA	=	SB.	Since	r	
is	the	perpendicular	bisector	of	segment	RS,	R	reflects	into	S,	which	is	on	line	n.	
Corollary:	Parallel	lines	are	everywhere	equidistant.	
Proof:	PQ	=	RS	since	PA	+	AQ	=	RB	+	BS.	
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Chapter	4:	Dilation	and	Similarity	
	
To	begin	this	chapter,	we	expand	on	the	foundational	ideas	of	Chapter	1	–	Basics	of	
Isometries	and	Congruence.		
	
Definitions	

Dilation:	A	dilation	with	center	O	and	scale	factor	k	≠	0	maps	O	to	itself	and	any	other	
point	P	to	P'	so	that	O,	P,	and	P'	are	collinear	and	the	directed	segment	OP'	=	k	·	OP.	(If	k	
is	negative,	rays	OP'	and	OP	point	in	opposite	directions.)	
Similarity:	Two	figures	are	similar	if	one	can	be	superposed	on	the	other	by	a	dilation	
followed	by	a	sequence	of	isometries.	
General	Trapezoid:	A	quadrilateral	where	one	side	is	a	dilation	or	translation	of	the	
opposite	side.	If	a	translation,	the	trapezoid	is	a	parallelogram	because	one	pair	of	
opposite	sides	is	both	parallel	and	equal.	(Under	our	inclusive	definitions,	a	
parallelogram	is	a	special	trapezoid.)	
Note:	The	properties	of	a	general	trapezoid	are	proved	in	Theorem	15.	These	properties	
were	not	listed	in	Chapter	2	because	the	definition	of	a	general	trapezoid	depends	on	
dilation.	

	
Postulates	

To	our	previous	list	(the	parallel	postulate,	reflection	is	an	isometry,	and	the	
construction	postulates),	we	add	one	necessary	assumption	about	dilation:	
6.	 Dilation	preserves	collinearity.	

	
Basic	Theorems	
As	in	Chapter	1,	we	use	an	asterisk	to	indicate	theorems	that	in	our	view	should	be	
discussed	informally,	rather	than	proved	formally	when	working	with	students.	

1. *	A	dilation	with	scale	factor	-1	is	a	half-turn	around	the	center	of	dilation.	
Proof:	This	follows	immediately	from	the	definitions	of	dilation	and	rotation.	

2. *	A	dilation	with	scale	factor	k	<	0	is	the	composition	of	a	dilation	with	scale	factor	-1	
and	a	dilation	with	scale	factor	|k|,	all	with	the	same	center.	
Proof:	This	is	another	immediate	consequence	of	the	definitions.	

3. *	If	O	is	the	center	of	a	dilation,	k	is	the	scale	factor,	and	O,	A,	and	B	are	distinct	
collinear	points,	then	A'B'	=	|k|AB.	
Proof:		
Case	1:	A	and	B	are	on	the	same	side	of	O.	
By	the	definition	of	dilation	and	the	given	information,	O,	A,	A',	B,	and	B'	are	all	
collinear.	Even	if	k	is	negative,	A',	and	B'	are	on	the	same	side	of	O.	Suppose,	without	
loss	of	generality,	that	A	is	between	O	and	B,	so	that	OA	+	AB	=	OB.	Hence	OA	<	OB	
and,	even	if	k	is	negative,	OA'	=	|k|OA	<	|k|OB	=	OB'.	Therefore,	A'	is	between	O	and	B'	
and	OA'	+	A'B'	=	OB'.	By	the	definition	of	dilation,	OB'	=	|k|OB	and	OA'	=	|k|OA.	
Therefore,	A'B'	=	OB'	–	OA'	=	|k|OB	–	|k|OA	=	|k|(OB	–	OA)	=	|k|AB.	
Case	2:	A	and	B	are	on	opposite	sides	of	O.	
The	argument	is	very	similar,	except	that	one	starts	with	AO	+	OB	=	AB.	It's	still	the	
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case	that	O,	A,	A',	B,	and	B'	are	all	collinear,	but	now	O	is	between	A'	and	B'.	
Case	3:	Either	A	or	B	is	the	same	as	O.	
In	this	case,	A'B'	=	|k|AB	by	the	definition	of	dilation.	

4. *	The	image	of	a	line	under	a	dilation	is	a	line.	
Proof:	Let	O	be	the	center	of	a	dilation.	If	the	pre-image	line	m	contains	O,	then	the	
image	will	be	the	same	line	with	points	mapped	|k|	times	their	distance	from	O,	on	
the	same	side	if	k	>0	and	on	the	other	side	if	k	<	0.	So,	m'	=	m	in	this	case.	Now	
suppose	m	does	not	contain	O.	Since	dilations	preserve	collinearity,	m'	will	be	a	
possibly	proper	subset	of	a	line.	Neither	m	nor	the	line	containing	m'	can	be	parallel	
to	OP.	Pick	any	point	Q	on	the	line	containing	m'	and	draw	line	OQ.	Because	neither	
m	nor	m'	is	parallel	to	line	OQ,	it	will	intersect	m	at	P.	Since	the	dilation	maps	P	to	Q,	
any	point	on	the	line	containing	m'	is	an	image	point.	Therefore,	the	image	of	m	is	an	
entire	line.	

5. Fundamental	Theorem	of	Dilations	(FTD):	If	C,	A,	and	B	are	not	collinear,	the	
segment	A'B'	joining	the	images	of	A	and	B	under	a	dilation	with	center	C	and	scale	
factor	k	is	parallel	to	segment	AB	and	has	length	|k|AB.	
Proof:	
Part	1:	Segment	A'B'	||	segment	AB.	
Proof:	Let	the	image	of	line	m	through	points	
A	and	B	be	m'.	Assume	that	m	and	m’	are	not	
parallel.	Then	they	meet	at	a	point	B	≠	C.	
Choose	another	point	A	on	m.	The	image	of	A	
is	the	intersection	of	line	CA	with	line	m'.	B	is	
its	own	image,	so	B'	=	B.	From	A	and	A',	k	≠	1.	
From	B	and	B',	k	=	1.	This	contradiction	
completes	the	proof.	
Part	2:	If	k	>	0,	A'B'	=	kAB	and	the	directed	
segments	A'B'	and	AB	point	in	the	same	
direction.	
Proof:	Let	A'	and	B'	be	the	images	of	A	and	B	
respectively,	with	the	lengths	of	segments	
CA,	CA',	CB,	and	CB'	as	labeled	in	the	figure.	
From	the	definition	of	dilation,	
! = !!!

! = !!!
! .	By	Part	1,	AB	and	A'B'	are	

parallel.	Draw	a	line	through	B	parallel	to	
AA'	intersecting	A'B'	at	K.	Now	dilate	∆ABC	
from	center	B	with	scale	factor	− !

! ,	
resulting	in	the	figure	shown.	We	indicate	
segment	lengths	obtained	from	knowing	that	opposite	parallel	sides	of	a	
quadrilateral	insure	that	it's	a	parallelogram,	and	the	opposite	sides	of	a	

parallelogram	are	equal.	By	the	definition	of	dilation,	!! =
!
!.	Therefore,	

1+ !
! = 1+ !

!	,	or	
!!!
! = !!!

! .	In	terms	of	the	segments,	this	translates	to	
!!!
!" =

!!!!
!" =	k,	so	A'B'	=	kAB,	as	desired.	
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Part	3:	If	k	<	0,	A'B'	=	|k|AB	and	the	directed	segments	A'B'	and	AB	point	in	opposite	
directions.	
Proof:	By	Theorem	2,	we	can	decompose	the	dilation	to	a	composition	of	a	half-turn	
around	the	center	followed	by	a	dilation	from	the	center	with	scale	factor	|k|.	The	
image	of	the	directed	segment	AB	under	a	half	turn	has	the	same	length	and	points	
in	the	opposite	direction.	Now	we	apply	Part	2	above	to	obtain	the	result.	
Pedagogical	note:	The	proof	is	challenging.	If	it	you	deem	it	to	be	too	much	for	your	
students,	you	can	consider	this	theorem	to	be	an	axiom,	as	it	is	in	the	Common	Core	
State	Standards.	We	present	it	as	a	theorem	because,	although	it	does	not	follow	
from	the	definition	of	dilation,	it	can	be	derived	from	the	assumption	that	dilations	
preserve	collinearity.	

6. Under	a	dilation,	A'B'	=	|k|AB.	The	directed	segments	AB	and	A'B'	point	in	the	same	
direction	if	k	>	0	and	in	opposite	directions	if	k	<	0.	
Proof:	Theorem	3	proves	this	if	O,	A,	and	B	are	collinear.	Theorem	5	(the	FTD)	
proves	it	if	not.	

7. *	Dilation	preserves	betweenness.	
Proof:	If	points	A,	B	and	C	are	in	order	on	a	line,	AB	+	BC	=	AC.	If	k	is	the	scale	factor	
of	the	dilation,	then	A'B'	=	|k|AB,	B'C'	=	|k|BC,	and	A'C'	=	|k|AC	by	Theorem	5.	
Therefore,	A'B'	+	B'C'	=	A'C'.	This	implies	that	B'	is	between	A'	and	C'.	

8. *	The	image	of	a	segment	under	a	dilation	is	a	segment	and	the	image	of	a	ray	is	a	
ray.	
Proof:	Let	A	and	B	be	two	points	with	images	A'	and	B'	under	a	dilation	with	center	O	
and	scale	factor	k.	Because	collinearity	and	betweenness	are	preserved,	the	image	of	
segment	AB	is	a	subset	segment	A'B',	and	similarly	for	rays.	Any	point	Q	on	segment	
A'B'	or	ray	A'B'	is	the	image	of	a	point	Q'	under	a	dilation	with	center	O	and	scale	
factor	!!	.	Because	collinearity	and	betweenness	are	preserved,	Q'	must	lie	on	
segment	AB	or	ray	AB.	So,	the	image	is	the	entire	segment	or	ray.	

9. Dilation	preserves	angle	measure.	
Proof:	The	image	of	any	ray	under	a	dilation	is	another	ray	that	is	either	parallel	to,	
or	collinear	with,	its	pre-image.	(If	k	<	0,	the	directions	of	both	rays	will	be	
reversed.)	The	same	is	true	for	a	translation	and	a	half-turn	(needed	if	k	<	0).	So,	
with	a	translation	and	a	half-turn	if	k	<	0,	we	can	map	any	angle	into	its	image	under	
a	dilation.	Since	translations	and	half-turns	preserve	angles,	dilations	do	too.	

10. Dilation	preserves	the	ratio	of	the	lengths	of	any	two	segments.	
Proof:	Let	AB	and	CD	be	two	segments.	A'B'	=	|k|AB	and	C'D'	=	|k|CD	by	Theorem	6.	
Therefore,	!

!!!
!!!! =

!"
!"	.	

	
Similar	Triangles	

11. Similar	triangles	have	congruent	angles	and	proportional	sides.	
Proof:	Dilation	preserves	angle	measure	by	Theorem	9	and	isometries	do	also.	
Dilation	preserves	the	ratio	of	side	lengths	by	Theorem	10	and	isometries	do	also	
because	they	preserve	distance.	
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12. Similarity	Criteria	for	Triangles	
a. SSS	Similarity:	If	the	sides	of	two	triangles	are	proportional,	then	the	

triangles	are	similar.	
Proof:	Assume	∆ABC	and	∆DEF	have	
proportional	sides,	with	ratio	k	as	shown	
in	the	diagram.	Dilate	∆ABC	with	any	
center	and	scale	factor	k,	yielding	
∆A'B'C'.	∆A'B'C'	is	congruent	to	∆DEF	by	
SSS	congruence.	Since	we	can	map	ΔABC	
to	ΔDEF	by	a	dilation	and	a	sequence	of	
isometries	(those	that	map	∆A'B'C'	to	
∆DEF,)	the	triangles	are	similar	by	
definition.	
	
	
	

b. SAS	Similarity:	If	a	pair	of	sides	in	one	triangle	is	proportional	to	a	pair	of	
sides	in	another	triangle,	and	if	the	angles	between	those	sides	are	
congruent,	then	the	triangles	are	similar.	
Proof:	Given	∆ABC	and	∆DEF	such	that	
	!"!" =

!"
!"	=	k	and	∠C	=	∠F.	Dilate	∆ABC	

with	any	center	and	scale	factor	k,	
yielding	∆A'B'C'.	∆A'B'C'	is	congruent	to	
∆DEF	by	SAS	congruence.	Therefore,	
ΔABC	and	ΔDEF	are	similar	by	the	
same	argument	as	above.	
	
	
	
	
	
	

c. AA	Similarity:	If	two	angles	in	one	
triangle	are	equal	to	two	angles	in	another	triangle,	the	triangles	are	similar.	
Proof:	Given	∆ABC	and	∆DEF	such	that	
∠C	=	∠F	and	∠B	=	∠E.	Let	!"!" =	k,	so	that	
EF	=	ka.	Dilate	∆ABC	from	any	point	with	
scale	factor	k.	The	resulting	∆A'B'C'	is	
congruent	to	∆DEF	by	ASA	congruence.	
Therefore,	ΔABC	and	ΔDEF	are	similar.	
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d. HL	Similarity	Criterion	for	Right	Triangles:	If	the	hypotenuse	and	one	leg	of	
one	right	triangle	are	proportional	to	the	hypotenuse	and	one	leg	of	another,	
then	the	right	triangles	are	similar.	
Proof:	Given	right	∆ABC	and	right	∆DEF	such	that	∠C	=	∠F	=90˚,	and		
	!"!" =

!"
!"	=	k.	Dilate	∆ABC	from	any	point	with	scale	factor	k.	The	resulting	

∆A'B'C'	is	congruent	to	∆DEF	by	HL	congruence	for	right	triangles.	Therefore,	
ΔABC	and	ΔDEF	are	similar.	

13. A	segment	joining	the	midpoints	of	two	sides	of	a	triangle	(called	a	midsegment)	is	
parallel	to	the	third	side	and	half	as	long.	
Note:	This	was	proved	in	Chapter	3.	We	
include	this	proof	as	well	because	it	is	shorter	
and	more	elegant.	If	you	include	Theorem	14	
below	in	your	development,	you	can	just	
mention	this	theorem	as	a	corollary	of	it.	
Proof:	Let	DE	be	a	midsegment	of	ΔABC.	Dilate	
ΔABC	from	A	with	scale	factor	!!	.	Since	D	and	E	
are	midpoints,	B'	=	D	and	C'	=	E.	The	FTD	tells	
us	that	!"||!"	and	!" = !

!!".	
14. If	a	segment	joins	points	on	two	sides	of	a	triangle	whose	distances	are	the	same	

fraction	k	(0	<	k	<	1)	of	the	distance	from	their	common	endpoint	to	their	other	
endpoint,	then	the	segment	joining	these	points	is	parallel	to	the	third	side	and	its	
length	is	the	same	fraction	k	of	it.	
Proof:	Let	D	and	E	be	points	on	sides	AB	
and	AE	of	ΔABC	respectively,	chosen	so	
that	AD	=	kAB	and	!" = !"#,	where	
0<k<1.	Dilate	ΔABC	from	A	with	scale	
factor	!.	By	the	definition	of	dilation,	B'	=	D	
and	C'	=	E.	The	FTD	tells	us	that	DE	||	BC	
and	DE	=	kBC.	
Note:	A	similar	argument	works	if	k	>1	if	
you	replace	segments	AB	and	AC	by	rays	
AB	and	AC.	
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General	Trapezoid	
15. Properties	of	a	General	Trapezoid:	

a. A	pair	of	opposite	sides	(called	bases	in	the	dilation	case)	are	parallel.	
Proof:	If	one	side	is	a	dilation	of	another,	the	center	of	dilation	can't	be	on	a	
line	containing	one	of	these	sides,	because	if	it	were,	the	opposite	sides	
would	be	collinear.	By	the	FTD,	the	image	of	a	side	is	parallel	to	its	pre-image.	
If	one	side	is	a	translation	of	another,	the	image	of	a	segment	under	
translation	by	a	vector	not	parallel	to	the	line	is	a	line	parallel	to	its		
pre-image.		

b. Consecutive	angles	(on	different	bases	if	the	trapezoid	is	not	a	parallelogram)	
are	supplementary.	
Proof:	This	is	a	property	of	parallel	lines	cut	by	a	transversal.	
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Chapter	5:	Circles	
	
Circle	Definitions	

Circle:	The	set	of	points	that	are	a	given	fixed	distance	from	a	given	point	(the	center).	
Radius:	Either	the	given	fixed	distance	or	a	segment	joining	the	center	to	a	point	on	a	
circle.	
Chord:	A	segment	connecting	two	points	on	a	circle.	
Diameter:	A	chord	that	passes	through	the	center	of	a	circle.	The	word	diameter	also	
refers	to	the	length	of	any	such	segment.	
Secant:	A	line	that	intersects	a	circle	in	two	points.	
Tangent:	A	line	that	intersects	a	circle	in	exactly	one	point	(the	point	of	tangency	or	
point	of	contact).	
Tangent	Segment:	A	segment	that	is	a	subset	of	a	tangent	line,	with	an	endpoint	on	the	
circle.	

	
Notation	

A	circle	can	be	named	by	its	center	if	only	one	circle	in	the	diagram	has	that	center.	In	
that	case,	Circle	O	names	the	circle	whose	center	is	O.	

	
Theorems	

We	include	neither	the	inscribed	angle	theorem	nor	theorems	about	intersecting	
chords,	because	we	did	not	find	transformational	proofs	for	them.	They	should	certainly	
be	included	in	a	geometry	course,	but	they	can	be	proved	using	traditional	methods.	

	
1. Any	diameter	of	a	circle	is	a	line	of	symmetry.	

Proof:	Let	P	be	a	point	on	circle	O	and	let	d	be	a	diameter.	Consider	reflection	in	d.	
The	reflection	of	OP	is	OP',	so	OP'	=	OP	because	reflection	preserves	distance.	
Therefore	P'	is	also	on	circle	O.	

2. If	a	diameter	is	perpendicular	to	a	chord,	it	bisects	the	chord.	
Proof:	Let	diameter	d	of	circle	O	be	perpendicular	to	chord	AB.	Since	A	and	B	are	
both	on	the	circle,	OA	=	OB.	Therefore,	ΔOAB	is	isosceles.	By	Theorem	1d	of		
Chapter	2,	its	line	of	symmetry	is	a	perpendicular	bisector.	

3. If	a	diameter	bisects	a	chord,	it	is	perpendicular	to	the	chord.	
Proof:	Let	diameter	d	of	circle	O	bisect	chord	AB	at	K.	Since	A	and	B	are	both	on	the	
circle,	OA	=	OB.	Therefore,	ΔOAB	is	isosceles.	By	Theorem	1d	of	Chapter	2,	its	line	of	
symmetry	is	a	perpendicular	bisector.	

4. The	perpendicular	bisector	of	a	chord	passes	through	the	center	of	the	circle.	
Proof:	The	center	of	the	circle	is	equidistant	from	the	endpoints	of	the	chord,	so	it	
lies	on	its	perpendicular	bisector.	
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5. The	reflection	of	a	tangent	segment	in	the	segment	joining	its	external	endpoint	to	
the	center	is	another	tangent	segment.	
Proof:	Let	PA	be	a	tangent	segment	to	
circle	O	as	shown.	Reflect	PA	in	PO;	its	
image	is	PA'.	Since	reflection	preserves	
distance,	OA'	=	OA,	so	A'	is	on	circle	O.	No	
other	point	on	the	line	containing	PA	is	a	
distance	r	from	O,	so	no	other	point	on	the	
line	containing	PA'	can	be	r	away	from	O.	
Therefore	PA'	is	a	tangent	segment.	

6. Tangent	segments	to	a	circle	from	an	external	point	are	equal.	
Proof:	Using	Theorem	5	and	the	same	diagram,	PA'	=	PA	because	reflection	
preserves	distance.	

7. A	segment	joining	an	external	point	to	the	center	of	a	circle	bisects	the	angle	formed	
by	the	two	tangent	segments	drawn	from	that	point.	
Proof:	Using	Theorem	5	and	the	same	diagram,	∠OPA'	=	∠OPA	because	reflection	
preserves	angle	measure.	

8. A	line	perpendicular	to	a	radius	at	its	endpoint	on	the	circle	is	a	tangent	line.	
Proof:	Let	line	t	be	perpendicular	to	radius	OP	at	P.	t	
reflects	onto	itself	in	OP.	Suppose	t	intersected	circle	
O	at	another	point	Q.	Then	Q'	would	be	on	both	t	and	
circle	O	as	well.	In	that	case,	circle	O	and	t	would	
intersect	in	three	points	(Q,	P	and	Q'),	which	
contradicts	Postulate	3.	Therefore,	t	intersects	circle	
O	only	at	P,	so	it	is	a	tangent	line.	

9. A	tangent	to	a	circle	is	perpendicular	to	a	radius	
drawn	to	the	point	of	tangency.	
Proof:	Let	u	be	tangent	to	circle	O,	with	P	as	the	point	
of	tangency.	Drop	a	perpendicular	b	from	O	to	u.	Let	
P'	be	the	reflection	of	P	in	b.	Since	b	is	perpendicular	
to	u,	P'	must	be	on	u.	But	since	reflections	preserve	distance,	OP	=	OP'.	Therefore	P'	
is	also	on	the	circle.	But	u	is	tangent	to	the	circle	at	one	point,	so	P'	=	P.	Since	P	is	its	
own	reflection	in	b,	it	must	be	on	line	b.	Thus	OP,	the	radius	drawn	to	the	point	of	
tangency,	is	perpendicular	to	u.	

10. When	two	circles	intersect	in	two	points,	the	line	through	their	centers	is	the	
perpendicular	bisector	of	their	common	chord.	
Proof:	Circles	O	and	P	have	common	chord	
QR.	Since	O	and	P	are	both	equidistant	
from	Q	and	R,	they	lie	on	its	perpendicular	
bisector.	
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Chapter	6:	Pythagorean	Theorem	
	
There	are	many	proofs	of	the	Pythagorean	theorem,	including	many	dissection	proofs.	This	
one	is	tailor-made	for	transformations,	because	it	relies	on	showing	that	quadrilaterals	(not	
triangles)	are	congruent.	Traditional	curriculum	doesn’t	include	congruent	quadrilaterals.	
A	dissection	proof	is	very	visual:	you	literally	cut	the	square	built	on	the	longer	leg	of	a	
right	triangle	into	congruent	quadrilaterals	and	reassemble	the	pieces,	along	with	the	
square	built	on	the	shorter	leg,	to	build	a	square	on	the	hypotenuse.	We	want	to	prove	that	
this	really	works	–	that	the	five	pieces	really	do	form	a	square	on	the	hypotenuse.	Along	the	
way,	we	use	properties	of	a	parallelogram	and	write	simple	equations	relating	some	of	the	
side	lengths.	
	
Henry	Perigal,	Jr.	(1	April	1801	–	6	June	1898)	was	a	British	stockbroker	and	amateur	
mathematician.	He	provided	this	dissection	in	his	booklet	Geometric	Dissections	and	
Transpositions	(London:	Bell	&	Sons,	1891).	He	had	the	dissection	printed	on	his	business	
cards,	and	it	also	appears	on	his	tombstone.	(Source:	Wikipedia)	
	
The	diagram	shows	a	right	triangle	with	squares	
built	on	the	legs	and	hypotenuse.	O	is	the	center	of	
the	square	ACED	(the	intersection	of	its	diagonals).	
Draw	lines	through	O	parallel	and	perpendicular	to	
BA	and	cut	them	off	at	points	P,	Q,	R,	and	S	on	the	
square.	There	are	four	right	angles	with	vertex	O.	
	
Square	ADEC	has	4-fold	rotational	symmetry	
(Chapter	2	Theorem	9d).	Therefore,	under	a	90˚	
counterclockwise	rotation	around	O,	A	→	D→	E→	
C→	A.	This	implies	that	sides	AD	→	DE→	EC→	CA→	
AD.	In	addition,	line	PR	→	line	QS	→	line	PR.	Since	P	
is	the	intersection	of	line	PR	and	side	AD,	and	since	
Q	is	the	intersection	of	line	QS	and	side	DE,	this	
means	that	P	→	Q.	A	similar	argument	applies	to	the	
other	points	on	the	sides	of	the	square,	so		
P	→	Q→	R→	S→	P.	Since	the	rotation	is	around	O,	O	
remains	fixed.	Since	vertices	map	to	vertices	and	
rotation	maps	segments	to	segments,	we	have	shown	that,	under	a	90˚	counterclockwise	
rotation	around	O,	OPDQ	→	OQER→	ORCS→	OSAP→	OPDQ.	By	definition,	all	four	of	these	
quadrilaterals	are	congruent.	Note	that	each	quadrilateral	has	two	opposite	right	angles.	
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Translate	each	of	these	quadrilaterals	to	a	
corner	of	the	square	built	on	the	hypotenuse,	
as	shown	in	the	diagram.	By	construction,	
RP	||	BA.	AD	||	BE	because	the	opposite	sides	
of	a	square	are	parallel.	By	Chapter	2	
Theorems	9a	and	7e	and	Chapter	3		
Theorem	3b,	BAPR	is	a	parallelogram.	Its	
opposite	sides	are	equal	by	Chapter	2	
Theorem	4f.	Therefore,	a	+	d	=	e.		
	
But	translation	preserves	segment	length,	so	
A'P'	=	e	and	C'P'	=	d.	Thus		
A'C'	=	A'P'	–	C'P'	=	e	–	d	=	a.	The	same	
argument	applies	to	the	other	sides	of	the	
central	white	quadrilateral,	so	all	sides	have	
length	a	and	all	angles	are	right	angles,	so	it	is	
a	square	with	area	a2.	(It	is	possible,	but	not	
necessary	for	this	proof,	to	show	it	is	the	
translation	image	of	the	original	square	on	
side	a.)	
	
By	the	rotational	symmetry,	OP	=	OQ	=	OR	=	OS	=	g,	and	since	the	opposite	sides	of	a	
parallelogram	are	equal,	2g	=	c.	Since	each	quadrilateral	has	two	right	angles	and	the	sum	
of	the	angles	in	a	quadrilateral	is	360˚,	the	other	two	angles	are	supplementary.	Since	the	
four	quadrilaterals	are	congruent,	∠BP'C'	and	∠AP'C'	are	supplementary,	so	BP'	and	P'A	are	
collinear.	The	same	argument	applies	to	the	other	midpoints	of	sides	of	the	square	on	
hypotenuse	AB.	Therefore,	the	five	pieces	cover	the	square	on	the	hypotenuse	with	no	gaps	
or	overlaps.	It	follows	that	the	diagram	shows	that	the	area	of	the	square	built	on	the	
hypotenuse	is	the	sum	of	the	areas	of	the	squares	built	on	the	legs.	
	
Further	Exploration:	
It	is	possible	to	find	the	lengths	e	and	f	in	terms	of	a	and	b.	This	is	an	interesting	exercise.	
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Appendix 

An asterisk indicates a theorem which, in our view, should be discussed, but need not be proved 
formally in a standard geometry course. (See Chapter 1 for an explanation.) 

List of Theorems from Chapter 1 

Basic Theorems 
1. *	If	A'	=	B	under	a	reflection,	then	B'	=	A.	
2. *	Reflection	preserves	collinearity	and	betweenness.	
3. *	If	A	→A'	and	B	→B'	under	a	reflection,	segment	AB	must	map	onto	segment	A'B'.	
4. *	Reflections	map	rays	onto	rays	and	lines	onto	lines.	
5. *	Congruent	segments	have	equal	length.	Congruent	angles	have	equal	measure.	
6. *	The	corresponding	sides	and	angles	of	congruent	polygons	have	equal	measure.	
7. *	There	is	a	reflection	that	maps	any	given	point	P	onto	any	given	point	Q.	

Triangle Congruence 
8. A	point	P	is	equidistant	from	two	points	A	and	B	if	and	only	if	it	lies	on	their	perpendicular	

bisector.	
9. If	two	segments	AB	and	CD	have	equal	length,	then	one	is	the	image	of	the	other,	with	C	

the	image	of	A	and	D	the	image	of	B,	under	either	one	or	two	reflections.	
10. Equal	length	segments	are	congruent.	If	we	combine	this	with	Theorem	5,	we	have:	

Segments	are	congruent	if	and	only	if	they	have	equal	length.	
11. Congruence	Criteria	for	Triangles	

a. SSS	Congruence:	If	all	sides	of	one	triangle	are	congruent,	respectively,	to	all	sides	
of	another,	then	the	triangles	are	congruent.	

b. SAS	Congruence:	If	two	sides	of	one	triangle	are	congruent	to	two	sides	of	another,	
and	if	the	included	angles	have	equal	measure,	then	the	triangles	are	congruent.	

c. ASA	Congruence:	If	two	angles	of	one	triangle	are	congruent	to	two	angles	of	
another,	and	if	the	sides	common	to	these	angles	in	each	triangle	are	congruent,	
then	the	triangles	are	congruent.	

12. HL	Congruence	Criterion	for	Right	Triangles:	If	the	hypotenuse	and	one	leg	of	one	right	
triangle	are	congruent	to	the	hypotenuse	and	one	leg	of	another,	then	the	right	triangles	
are	congruent.	

13. If	two	triangles	are	congruent,	one	can	be	superimposed	on	the	other	by	a	sequence	of	at	
most	three	reflections.	

14. *	Angles	with	equal	measure	are	congruent.	If	we	combine	this	with	Theorem	5,	we	have:	
Angles	are	congruent	if	and	only	if	they	have	equal	measure.	

Two Reflections 
15. *	If	a	line	is	perpendicular	to	one	of	two	parallel	lines,	it	is	perpendicular	to	the	other.	
16. The	composition	of	two	reflections	in	parallel	lines	is	translation.	The	translation	vector	is	

perpendicular	to	the	lines,	points	from	the	first	line	to	the	second,	and	has	length	twice	
the	distance	between	the	lines.	This	implies	that	any	translation	can	be	decomposed	into	
two	reflections.	
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17. The	composition	of	two	reflections	in	intersecting	lines	is	a	rotation	around	their	point	of	
intersection.	The	angle	of	rotation	is	twice	the	directed	angle	between	the	lines	going	
from	the	first	reflection	line	to	the	second	(either	clockwise	or	counterclockwise).	This	
implies	that	any	rotation	can	be	decomposed	into	two	reflections.	

18. *	Reflection,	rotation,	and	translation	preserve	collinearity,	betweenness,	segment	length	
and	angle	measure.	

19. *	If	A	→A'	and	B	→B'	under	a	reflection,	rotation,	or	translation,	segment	AB	must	map	
onto	segment	A'B'.	

20. *	Reflections,	rotations,	and	translations	map	rays	onto	rays	and	lines	onto	lines.	
21. *	Given	two	intersecting	lines,	there	are	two	reflections	mapping	one	to	the	other.	

Note:	The	related	theorem	for	distinct	parallel	lines	is	Theorem	10	of	Chapter	3.	

Translations, Half-Turns, and Parallels 
22. *	If	A'	=	B	under	a	half-turn,	then	B'	=	A.	
23. *	The	image	of	segment	AB	under	a	half-turn	around	its	midpoint	is	the	segment	BA.	That	

is,	A'	=	B	and	B'	=	A.	
24. *	A	line	is	its	own	image	under	a	half-turn	around	a	point	on	the	line.	
25. The	image	of	a	line	under	a	half-turn	is	parallel	to	the	pre-image.	
26. *	When	two	lines	intersect,	the	vertical	angles	are	equal.	
27. *	If	two	distinct	lines	are	cut	by	a	transversal,	they	are	parallel	if	and	only	if	the	alternate	

interior	angles	are	equal.	
28. *	If	two	distinct	lines	are	cut	by	a	transversal,	they	are	parallel	if	and	only	if	the	

corresponding	angles	are	equal.	
29. *	The	composition	of	translations	is	commutative.	
30. *	The	translation	image	of	a	line	is	parallel	to	the	line.	
31. *	Any	representative	of	a	vector	can	be	superimposed	on	any	other	by	a	translation.	
32. *	If	two	distinct	lines	are	cut	by	a	transversal,	an	angle	on	one	line	is	the	translation	image	

of	an	angle	on	the	other	if	and	only	if	the	lines	are	parallel.	

Sum of Angles 
33. The	sum	of	the	angles	of	a	triangle	is	180˚.	An	exterior	angle	of	a	triangle	is	equal	to	the	

sum	of	the	remote	interior	angles.	Therefore,	it	is	greater	than	either	one.	
34. The	sum	of	the	interior	angles	of	a	quadrilateral	is	360˚.	(A	concave	quadrilateral	will	

have	an	interior	angle	greater	than	180˚.)	
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List of Theorems from Chapter 4 

Basic Theorems 
1. *	A	dilation	with	scale	factor	-1	is	a	half-turn	around	the	center	of	dilation.	
2. *	A	dilation	with	scale	factor	k	<	0	is	the	composition	of	a	dilation	with	scale	factor	-1	and	

a	dilation	with	scale	factor	|k|,	all	with	the	same	center.	
3. *	If	O	is	the	center	of	a	dilation,	k	is	the	scale	factor,	and	O,	A,	and	B	are	distinct	collinear	

points,	then	A'B'	=	|k|AB.	
4. *	The	image	of	a	line	under	a	dilation	is	a	line.	
5. Fundamental	Theorem	of	Dilations	(FTD):	If	C,	A,	and	B	are	not	collinear,	the	segment	A'B'	

joining	the	images	of	A	and	B	under	a	dilation	with	center	C	and	scale	factor	k	is	parallel	to	
segment	AB	and	has	length	|k|AB.	

6. Under	a	dilation,	A'B'	=	|k|AB.	The	directed	segments	AB	and	A'B'	point	in	the	same	
direction	if	k	>	0	and	in	opposite	directions	if	k	<	0.	

7. *	Dilation	preserves	betweenness.	
8. *	The	image	of	a	segment	under	a	dilation	is	a	segment,	the	image	of	a	ray	is	a	ray.	
9. Dilation	preserves	angle	measure.	
10. Dilation	preserves	the	ratio	of	the	lengths	of	any	two	segments.	

Similar Triangles 
11. Similar	triangles	have	congruent	angles	and	proportional	sides.	
12. Similarity	Criteria	for	Triangles	

a. SSS	Similarity:	If	the	sides	of	two	triangles	are	proportional,	then	the	triangles	are	
similar.	

b. SAS	Similarity:	If	a	pair	of	sides	in	one	triangle	is	proportional	to	a	pair	of	sides	in	
another	triangle,	and	if	the	angles	between	those	sides	are	congruent,	then	the	
triangles	are	similar.	

c. AA	Similarity:	If	two	angles	in	one	triangle	are	equal	to	two	angles	in	another	
triangle,	the	triangles	are	similar.	
Note:	These	correspond	to	the	congruence	criteria.	AA	Similarity	corresponds	to	
ASA	Congruence.	The	side	isn’t	needed	because	it	takes	two	or	more	sides	to	make	
a	proportion.	

13. A	segment	joining	the	midpoints	of	two	sides	of	a	triangle	(called	a	midsegment)	is	
parallel	to	the	third	side	and	half	as	long.	

14. If	a	segment	joins	points	on	two	sides	of	a	triangle	whose	distances	are	the	same	fraction	
k	(0	<	k	<	1)	of	the	distance	from	their	common	endpoint	to	their	other	endpoint,	then	the	
segment	joining	these	points	is	parallel	to	the	third	side	and	its	length	is	the	same	fraction	
k	of	it.	

General Trapezoid 
15. Properties	of	a	General	Trapezoid:	

a. A	pair	of	opposite	sides	(called	bases	in	the	dilation	case)	are	parallel.	
b. Consecutive	angles	(on	different	bases	if	this	is	not	a	parallelogram)	are	

supplementary.	
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List of Theorems from Chapter 5 
1. Any	diameter	of	a	circle	is	a	line	of	symmetry.	
2. If	a	diameter	is	perpendicular	to	a	chord,	it	bisects	the	chord.	
3. If	a	diameter	bisects	a	chord,	it	is	perpendicular	to	the	chord.	
4. The	perpendicular	bisector	of	a	chord	passes	through	the	center	of	the	circle.	
5. The	reflection	of	a	tangent	segment	in	the	segment	joining	its	external	endpoint	to	the	

center	is	another	tangent	segment.	
6. Tangent	segments	terminating	on	a	circle	from	an	external	point	are	equal.	
7. A	segment	joining	an	external	point	to	the	center	of	a	circle	bisects	the	angle	formed	by	

the	two	tangent	segments	drawn	from	that	point.	
8. A	line	perpendicular	to	a	radius	at	its	endpoint	is	a	tangent	line.	
9. A	line	not	perpendicular	to	a	radius	at	its	endpoint	is	not	a	tangent	line.	(Theorems	8	and	

9	can	be	combined:	A	line	is	perpendicular	to	a	radius	at	its	endpoint	if	and	only	if	it	is	a	
tangent	line.)	

10. When	two	circles	intersect	in	two	points,	the	line	through	their	centers	is	the	
perpendicular	bisector	of	their	common	chord.	

 


