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Triangle Congruence and Similarity 
A Common-Core-Compatible Approach 

Henri Picciotto 

The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the 
geometry program in grades 8 to 10: geometric transformations, not congruence and similarity postulates, 
are to constitute the logical foundation of geometry at this level. This paper proposes an approach to 
triangle congruence and similarity that is compatible with this new vision. 

Transformational Geometry and the Common Core 

From the CCSSM1: 

The concepts of congruence, similarity, and symmetry can be understood from the perspective of 
geometric transformation. Fundamental are the rigid motions: translations, rotations, reflections, 
and combinations of these, all of which are here assumed to preserve distance and angles (and 
therefore shapes generally). Reflections and rotations each explain a particular type of symmetry, 
and the symmetries of an object offer insight into its attributes—as when the reflective symmetry 
of an isosceles triangle assures that its base angles are congruent. 

In the approach taken here, two geometric figures are defined to be congruent if there is a 
sequence of rigid motions that carries one onto the other. This is the principle of superposition. 
For triangles, congruence means the equality of all corresponding pairs of sides and all 
corresponding pairs of angles. During the middle grades, through experiences drawing triangles 
from given conditions, students notice ways to specify enough measures in a triangle to ensure 
that all triangles drawn with those measures are congruent. Once these triangle congruence criteria 
(ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems 
about triangles, quadrilaterals, and other geometric figures. 

Similarity transformations (rigid motions followed by dilations) define similarity in the same way 
that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and 
"scale factor" developed in the middle grades. These transformations lead to the criterion for 
triangle similarity that two pairs of corresponding angles are congruent.  

This is a substantial departure from the traditional approach, in which congruence and similarity 
postulates are foundational. I support this change.  

Here is a pedagogical argument: congruence postulates are pretty technical and far from self-evident to a 
beginner. In fact, most teachers introduce the basic idea of congruence by saying something like "if you 
can superpose two figures, they are congruent." Well, that is not very far from saying "if you can move 
one figure to land exactly on top of the other, they are congruent." In other words, getting at congruence 
on the basis of transformations is more intuitive than going in the other direction. 

                                                
1 page 74 
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There are also mathematical arguments for the change: 
◊ A transformational approach offers deeper links between algebra and geometry, given the emphasis on 

functions (and thus composition of functions, inverse functions, fixed points, and so on.)  
◊ The natural connections with complex numbers and matrices can immeasurably enhance the teaching 

of these topics in grades 11-12.2 
◊ This approach can potentially give symmetry a greater role in school mathematics, which is not only a 

plus for geometric thinking, but also helps to make connections with art and nature, and provides a 
context to introduce elements of abstract algebra that throw light on operations. Operations are 
perhaps the main topic of K-12 mathematics.3 

◊ Finally, the change makes it possible to discuss the similarity of curves (such as circles and 
parabolas), which could not be done under the traditional definition of similarity, as it relied on equal 
angles and proportional sides.4 

Curricular Implications 

One of the consequences of this change is the need for some clarity on how this new vision affects the 
logical structure of high school geometry. This paper attempts to shed some light on that question. 

In my view, the main purpose of teaching geometry in high school is to teach geometry, not to build a 
formal axiomatic system. The geometry curriculum needs to provide plenty of opportunity for reasoning, 
without getting stuck in an overly formal system where a rigid format for proof is required. This is 
especially true at the beginning of the course, where overly formal attempts to establish results that 
students consider self-evident backfires when it comes to student understanding and motivation. An 
emphasis on formalism is vastly more effective when students are a couple of years older.  

Therefore, I recommend that students have a lot of experience with interesting questions involving 
geometry (including but not limited to transformations) before being introduced to the ideas in this paper, 
which is intended mostly for the benefit of teachers and curriculum developers. In particular, one of the 
implications of the approach outlined herein is that students should do substantial work with geometric 
construction prior to being exposed to these proofs. This work should include traditional tools (compass 
and straightedge) but also contemporary tools such as patty paper, Plexiglas see-through mirrors, and 
especially interactive geometry software. Such work is essential in developing students’ visual sense and 
logic, and is a strong preparation for the proofs I present in this paper.5 

In the bigger picture, I agree with the CCSSM that an informal introduction to the triangle congruence 
criteria should precede any formal work on this topic, but I fear that seventh grade may be too early to do 
it effectively. Moreover, I am certain that a semi-formal introduction to similarity should follow, not 
precede the work on congruence, for both logical and pedagogical reasons. 

In any case, I hope this paper is useful even to people who do not share my views on pedagogy. 

                                                
2 See Computing Transformations (Henri Picciotto, www.MathEducationPage.org/transformations) 
3 For some introductory curriculum on symmetry, see Chapter 5 of Geometry Labs (Henri Picciotto, 
www.MathEducationPage.org/geometry-labs). For an Introduction to Abstract Algebra suitable for grades 8 to 12, see 
http://www.mathedpage.org/abs-alg/, by Henri Picciotto 
4 See Geometry of the Parabola (Henri Picciotto, http://www.mathedpage.org/parabolas/geometry/) 
5 See Geometric Construction (Henri Picciotto, http://www.mathedpage.org/constructions/) 
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Definitions 

It is important to not embark on formally defining ideas such as segment length and angle measure at the 
pre-college level. Such attempts only serve to alienate students, and add nothing to the substance of the 
course. 

In this paper, some definitions are unchanged from a traditional approach to secondary school geometry. 
For example these two: 

The perpendicular bisector of a segment is the perpendicular to the segment through its midpoint. 
A circle with center O and radius r is the set of points P such that OP = r. 

On the other hand, the following definitions may be new: 

Definitions: A transformation of the plane is a one-to-one function whose domain and range are the 
entire plane. An isometry is a transformation of the plane that preserves distance.6 

In this paper, the only isometries we will need are reflections. 

Definition: A reflection in a line b maps any point on b to itself, and any other point P to a point P' so that 
b is the perpendicular bisector of PP’.7 

Definition: A dilation with center O and scaling factor r maps O to itself and any other point P to P’ so 
that O, P, and P’ are collinear, and the directed segment OP’ = r · OP.8 

Definition: Two figures are congruent if one can be superposed on the other by a sequence of isometries.9  

Definition: Two figures are similar if one can be superposed on the other by a sequence of isometries 
followed by a dilation.10 

Note that this definition is equivalent to “Two figures are similar if one can be superposed on the other by 
a dilation followed by a sequence of isometries.” The reason is that if figure 1 is similar to figure 2 by the 
latter definition, then figure 2 is similar to figure 1 by the former. This observation, and the wording “one 
can be superposed on the other” make it clear that order does not matter. 

                                                
6 In the CCSSM, isometries are called rigid motions. 
7 The CCSSM suggests that transformations be defined “in terms of angles, circles, perpendicular lines, parallel lines, and line 
segments.” (p. 76) 
8 In other words, if r is negative, OP’ is in the opposite direction from OP. In the CCSSM, no mention is made of the possibility 
of a negative scaling factor. I believe that it is both mathematically and pedagogically sound to allow for that possibility, 
especially since that is the assumption of all the interactive geometry software applications. 
9 The concept of superposition goes back to Euclid, and is almost certainly the most common way to introduce the idea of 
congruence in the classroom. Those who wish to avoid the use of this word in the absence of a formal definition can rephrase 
the definitions: “Two figures are congruent if one is the image of the other in a sequence of isometries.” And likewise for 
similarity.  
10 I took the definition of congruence almost verbatim from the CCSSM. For similarity, the CCSSM does not specify any 
particular order for the transformations. I believe that insisting that the dilation be at the end (or beginning) is both easier to 
understand, and easier to work with in subsequent proofs. 
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Assumptions 

Of course, I will assume the parallel postulate. 

I will also make three construction assumptions, which I will use without explicitly referencing them: 
Two distinct lines meet in at most one point.  
A circle and a line meet in at most two points. 
Two distinct circles meet in at most two points. 

Finally, the following CCSSM-sanctioned assumptions about transformations constitute the foundation of 
much of this paper: 

Assumption 1: Reflection preserves distance and angle measure. 

Two immediate consequences of Assumption 1 are11: 
Congruent segments have equal length. 
The corresponding sides and angles of congruent polygons have equal measure. 

Assumption 2: If O, A, and B are not collinear, the image A’B’ of the segment AB under a dilation with 
center O and scaling factor r is parallel to AB, with length r · AB.12 

 

                                                
11 Another consequence is that rotations and translations preserve distance and angle measure, because they are compositions of 
two reflections. This can readily proved without recourse to congruent triangles, but I will not include this argument here. I’m 
only mentioning it because it shows that it is sufficient to make the assumption for reflections. (The CCSSM suggests making 
the assumption for all rigid motions.) 
12 In Teaching Geometry According to the Common Core Standards (Third revision: October 10, 2013) Wu outlines a proof of 
this result for rational scaling factors. However for the purposes of secondary school math, it is probably best to make this an 
assumption, as recommended by the CCSSM. 
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Triangle Congruence 

Preliminary Results 

Result 0: There is a reflection that maps any given point P into any given point Q. 

Proof: If P = Q, reflection in any line through P will do the job. If not, Q is the reflection of P across the 
perpendicular bisector of PQ. 

Result 1: A point P is equidistant from two points A and B if and only if it lies on their perpendicular 
bisector. 
Proof: Given: PA = PB, let us show P must lie on the perpendicular bisector of 
AB.    

Draw the angle bisector b of ∠APB. If we can show that b is the perpendicular 
bisector of AB, then we are done, since P is on it.  

If we were to reflect A in b, where would its image A' be? Since reflections 
preserve angles, A' must be on the ray PB. Since reflections preserve distance, 
A' must be on the circle centered at P, with radius PA. But the intersection of the 
ray and the circle is B, so A'=B. It follows that B is the reflection of A in b. Therefore b is the 
perpendicular bisector of AB.  

Given: P is on the perpendicular bisector b of AB. By definition of reflection, A is the image of B, and P 
is its own image in a reflection across b, so PA = PB since reflections preserve distance. 

Corollary: If two circles intersect in two points, those points are reflections of each other in the line 
joining the centers of the circles. (Because the centers are each equidistant from the points of 
intersection.) 

Result 2: If two segments have equal length, then one is the image of the other under either one or two 
reflections. 

Proof: Given AB = CD, by Result 0, we can reflect segment AB so that C is 
the image of A. Let B’ be the image of B. If B’=D, that reflection is the 
required single reflection. If not, since reflections preserve distance, we have 
CB’= AB = CD, and by Result 1, C is on the perpendicular bisector b of B’D.  

 
Therefore, a reflection of CB’ in b yields CD. QED. 

Corollary: Segments are congruent if and only if they have equal length.13 
(This follows from Result 2 and the definition of congruence.)  
  

                                                
13 In general, I have no objection to using “equal” to mean “having equal measure”. This usage is reasonably widespread. For 
example, Chakerian, Stein and Crabill say in their trailblazing text Geometry: A Guided Inquiry: “Corresponding parts of 
congruent triangles are equal.” This is also the language used by David E. Joyce in his online version of Euclid’s Elements. 
However, it appears that this usage is offensive to many, so I refrain from it in this paper. Still, consistent with Chakerian, 
Stein, and Crabill, I write AB=CD to mean “the segments AB and CD have equal lengths.” If this bothers you, I apologize. 
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SSS 
Theorem: (SSS) If all sides of one triangle have equal lengths, respectively, to all sides of another, then 
the triangles are congruent. 

Proof: We are given ∆ABC and ∆DEF, with AB = DE, BC = 
EF, and AC = DF. 

By Result 2, we can superpose AB onto DE in one or two 
reflections. Because reflections preserve distance, C’ (the image 
of C) must be at the intersection of two circles: one centered at 
D, with radius DF, the other centered at E, with radius EF.  

 
F, of course, is on both circles. If C’ = F, we’re done. If not, C’ 
must be at the other intersection, but by Result 1, DE must be 
the perpendicular bisector of FC’, so a reflection across DE 
superposes the two triangles. 

SAS 
Theorem: (SAS) If two sides of one triangle have equal lengths to two sides of another, and if the 
included angles have equal measure, then the triangles are congruent. 

Proof: We are given ∆ABC and ∆DEF, with AB = DE, AC = DF, and 
∠A = ∠D. 

By Result 2, we can superpose AB onto DE in one or two reflections. If 
C’=F, we’re done. If not, reflect F across DE.  

 
Because reflections preserve distance and angle measure, C’ must be on 
the ray DF’ and on the circle centered at D with radius DF. Therefore 
C’ = F’, so a reflection across DE superposes the two triangles.  

Corollary: Angles are congruent if and only if they have equal measure. 

ASA 
Theorem: (ASA) If two angles of one triangle are congruent to two angles of another, and if the sides 
common to these angles in each triangle have equal length, then the triangles are congruent. 

Proof: We are given ∆ABC and ∆DEF, with AB = DE, ∠A = ∠D, and 
∠B = ∠E. 

By Result 2, we can superpose AB onto DE in one or two reflections. If 
C’=F, we’re done. If not, reflect F across DE.  

Since reflections preserves angle measure, C’ must be on the ray DF’ 
and on the ray EF’. It follows that C’ = F’, so a reflection across DE 
superposes the two triangles. 
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Triangle Similarity 

Preliminary Results 

Because we have a new definition of similarity, we start by proving that the old definition still applies to 
similar triangles. 

Result 1: Similar triangles have angles with equal measure, and proportional sides. 

Proof: Given ∆ABC similar to ∆DEF. By definition of similarity, 
there must be a triangle ∆D’E’F’ congruent to ∆DEF, such that it is 
the image of ∆ABC in a dilation. Let us say the dilation has center O 
and scaling factor r.  

 

It follows from Assumption 2 that corresponding sides of ∆ABC and 
∆ D’E’F’ are proportional, with ratio r. Moreover, we can use what 
we know about parallels and transversals to show that corresponding 
angles in those two triangles are equal.14 Finally, since ∆D’E’F’ is 
congruent to ∆DEF, the same results apply to ∆ABC and ∆DEF: 
their corresponding sides are proportional, and their corresponding angles are equal. QED. 

Result 2: If two segments are parallel and unequal, one is the image of the other under a dilation. 

Proof: Assume AB // CD and AB ≠ CD. Let O be the intersection of 

AC and BD, and r = OC
OA

.  

Let A’B’ be the image of AB under a dilation with center O and ratio 
r. By construction, A’ = C. By Assumption 2, A’B’ // AB. Since there 
is only one parallel to AB through A’, it follows that B’ = D, and 
A’B’ = CD. Therefore, CD is obtained from AB by a dilation. QED. 

  

                                                
14 In my view, the results about parallels and transversals should be basic assumptions, accepted without a formal proof. In 9th 
or 10th grade, informal arguments suffice. For example, walking along one of the parallels, turning onto the transversal towards 
the other parallel, and turning again onto the latter, one’s “total turning” is “obviously” either 0°, or 180°. The results follow. If 
you prefer a formal proof, see Wu (Teaching Geometry in Grade 8 and High School According to the Common Core 
Standards,) but be warned that at the beginning of a course there is no quicker way to confuse and turn off students than to give 
elaborate arguments in order to arrive at results they consider self-evident.  
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SSS 
Theorem: (SSS similarity) If the sides of two triangles are proportional, then the triangles are similar. 

Proof: Assume ∆ABC and ∆DEF have proportional sides, 
with ratio r. Dilate ∆ABC with center A and ratio r.  

It follows from the definition of dilation and from 
Assumption 2 that the sides of the image ∆A’B’C’ are equal 
to the sides of ∆DEF, and so by SSS congruence, these 
triangles are congruent. Therefore, we can superpose ∆ABC 
onto ∆DEF by a dilation and some isometries. QED.  

SAS 
Theorem: (SAS similarity) If a pair of sides in one triangle is proportional to a pair of sides in another 
triangle, and the angles between those sides have equal measure, then the triangles are similar. 

Proof: Given ∆ABC and ∆DEF such that AB
DE

= AC
DF

 = r and 

∠A = ∠D. Assume r > 1. (If r = 1, we have SAS congruence. If 
r < 1, the argument is nearly identical to the one that follows.) Put 
point E’ on AB so that AE’ = DE, and point F’ on AC so that AF’ = 
DF.  

By definition of dilation, ∆ABC is dilated from ∆AE’F’ with center 
A and ratio r. But by SAS congruence, ∆AE’F’ is congruent to ∆DEF. Therefore, we can superpose 
∆ABC onto ∆DEF by a dilation and some isometries. QED. 

AA 
Theorem: (AA) If two angles in one triangle are equal to corresponding angles in another triangle, the 
triangles are similar. 

Proof: Given ∆ABC and ∆DEF such that ∠A = ∠D and 
∠B = ∠E, and therefore ∠C = ∠F. Draw a line parallel to 
BC. Mark two points E’ and F’ on it, so that E’F’ = EF, with 
E’F’ pointing in the same direction as BC. Copy angles E 
and F to make ∆D’E’F’ congruent to ∆DEF by ASA 
congruence, with D’ on the same side of the line as A is to 
BC. Let O be the intersection of BE’ and CF’.  

 
Because ∠E’ = ∠E = ∠B in the triangles, and because of 
equal corresponding angles determined by the transversal 
OB on the parallels BC and E’F’, we conclude that the two 

angles marked in the figure are equal, and AB // D’E’. Likewise, AC // D’F’. 

By Result 2, E’F’ is the image of BC under a dilation centered at O, with some scaling factor r. Let A’ be 
the image of A under the same dilation. By Assumption 2, A’E’ is parallel to AB, and A’ must be on 
D’E’. Likewise, A’ must be on D’F’. So A’ = D’. Therefore, we can superpose ∆ABC onto ∆DEF by a 
dilation and some isometries. QED. 
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